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Abstract: Estimating a demand system under the assumption that preferences are homogeneous
may lead to biased estimates of parameters for any specific individual and significantly different
expected consumer surplus estimates. This paper investigates several different parametric methods
to incorporate heterogeneity in the context of a repeated discrete-choice model. The first is the
classic method of assuming utility to be a function of individual characteristics. Second, a random
parameters method is proposed, where preference parameters have some known distribution.
Random parameters logit causes the random components to be correlated across choice occasions
and, in a sense, eliminates IIA. Simulation noise is discussed. Finally, methods are proposed to
relax the assumption that the unobserved stochastic component of utility is identically distributed
across individuals. For example, randomization of the logit scale, which is a new method, allows
noise levels to vary across individuals, without the added burden of explaining the source using
covariates. The application is to Atlantic salmon fishing, and expected compensating variations
and changes in trip patterns are compared across the models for three policy-relevant changes in
fishing conditions at the Penobscot River, the best salmon fishing site in Maine. 
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Introduction

A common assumption in random utility models of the demand for environmental amenities is

homogeneity of preferences. That is, the deterministic portion of utility is assumed not to vary

across individuals, and the variance of the random component is assumed to be iid. Incorrectly

restricting preferences to be homogeneous, if in fact preferences do vary across individuals, will

lead to biased parameter estimates for any specific individual, potentially resulting in dramatically

different mean consumer surplus estimates for changes in characteristics such as catch rates at

recreational fishing sites.1

The object of the paper is to discuss and compare different methods of introducing

preference heterogeneity into a repeated discrete-choice model. The models presented are all

utility-theoretic and explain both participation and site choice. The application is to recreational

Atlantic salmon fishing using revealed preference (RP) data.2 The data used in this study were

used by Morey, Rowe, and Watson (1993) to estimate a three-level repeated nested logit model

of participation and site choice with income effects, and several other related models. Their

models, however, do not allow heterogeneity of preferences for site characteristics or

heterogeneity of the logit scale.3

To examine preference heterogeneity in isolation, we introduce different forms of

heterogeneity into a logit model rather than a nested-logit model or a probit model. Adding

preference heterogeneity into either of these other types of models using any of the techniques

presented here is straightforward, but would complicate the presentation and discussion. As a

digression, introducing preference heterogeneity by incorporating group-specific random

parameters, which is one of the methods we present, can achieve some of the same goals as
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assuming a nesting structure (in particular, the relaxation of Independence of Irrelevant

Alternatives (IIA) properties), so could be considered a substitute for a nested-logit model.

The first and commonly used “classic” method of incorporating heterogeneity interacts

demand parameters with observable socioeconomic characteristics of the individual. Utility

effectively becomes a function of characteristics that vary across the sample. Classic models

include income-effects models and all other models that make utility a function of individual

characteristics. A different technique assumes that preference parameters for all individuals are

drawn randomly from some known probability distribution function (PDF), although the

parameters for any specific individual are unknown. In addition to introducing preference

heterogeneity, Random parameters logit (RPL) is appealing, because it allows correlation of

random disturbances across choice occasions.

A contribution of this paper is the introduction of a random logit scale parameter. This

parameter addresses varying noise levels in choice-making across recreationists without the added

burden of having to explain the source of noise using individual characteristics that may or may

not be correlated with the noise. The method also avoids econometric difficulties associated with

trying to estimate individual-specific scales. The proposed random scale approach is contrasted

with other scaling approaches. Varying scales are empirically indiscernible from parameter

proportionality, where the demand parameter vector only varies across individuals by a factor of

proportionality.

We find that restricting preferences to be homogeneous often leads to significantly

different mean consumer surplus estimates. For models that include socioeconomic characteristics

to address heterogeneity, preferences vary as a function of these characteristics in plausible ways.
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(1)

Techniques to Accommodate Preference Heterogeneity

Heterogeneity of preferences can be addressed either through a vector of marginal utilities

(denoted $i for individual i) incorporating demand parameters, or by assumptions about the

distribution of the stochastic component of utility (or by using multiple methods simultaneously

addressing both components). The first two methods mentioned in the previous section, which

allow $i to vary across individuals either as a function of individual characteristics or randomly

based on some distribution, take the former approach. Other techniques pursue the latter by

letting error variances differ across individuals, which may reflect different levels of coherence in

decision-making or interest in the activity or the included variables. Allowing the variance of the

disturbance term to differ across individuals results in the same likelihood function as allowing $

to vary across individuals up to a factor of proportionality, because one specification is a

reparameterization of the other (Swait and Louviere 1993). 

A Repeated Multinomial Logit Model of Recreation Demand with Homogeneous Preferences 

Consider a logit model of recreation demand. On each of T choice occasions, the individual

chooses the alternative that provides the greatest utility from J alternatives. The utility individual i

receives on choice-occasion t if he chooses alternative j is:

Assume the term Vji is deterministic. It is a linear function of a vector of explanatory variables xji

associated with angler i and alternative j that are time-invariant, taking the form: Vji = $iNxji.4 The

,'s vary from period to period and across individuals in a way the researcher cannot observe.
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(2)

(3)

Assume ,jti is independently drawn from a univariate extreme value distribution with the

cumulative distribution function:

where si is a positive scale.5 This distribution has E(,i) = (0.57721/si) and 

The  probability that individual i will choose alternative j on choice-occasion t is:

for all t. Given this distributional assumption, the observed number of trips to each site by

individual i (yji) has a multinomial distribution.

Homogeneity of preferences is defined as $i = $ (i.e., effects on utility of changes in site

characteristics do not vary across anglers either systematically or randomly) and si = s ¼ i.

Preference homogeneity implies that the random components are independent and identically

distributed. This restrictive assumption means that the error variances across anglers are assumed

to be the same and that there is no correlation in random components across choice occasions for

a given angler.

Under homogeneity, let s = 1 without loss of generality, the usual assumption in logit

models. Later, the scale parameter, s, will be allowed to vary across anglers, introducing

heterogeneity in the variance of the stochastic component. It is clear from equation 3 that

allowing s to vary across individuals is empirically equivalent to allowing $ to vary up to a factor

of proportionality. 
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(4)

Utility as a Function of Individual Characteristics

This and the following section relax the assumption that $i = $ ¼ i, while maintaining the

assumption that si = 1 ¼ i. The utility angler i receives during choice-occasion t from alternative j

is, therefore:

The random component ,jti is iid.

The classic way to allow preferences to vary across individuals is to interact individual

socioeconomic characteristics, such as age, gender, or income, with model parameters

(Adamowicz, Louviere, and Swait 1998). Pollack and Wales (1992) summarize methods of using

demand parameters interacted with demographic variables. Two applications of this technique are

Morey (1981) and Morey et al. (1999a). The first is a choice-share model of skiing in Colorado,

in which the effects of ski area characteristics on utility are assumed to be functions of skier

attributes. The second is a repeated nested logit model of recreational trout fishing in

southwestern Montana, where model parameters are interacted with resident status to allow

nonresident anglers to have different preferences from residents. In the latter case, forcing

nonresidents to have the same preferences would significantly lower economic values for

environmental improvements.

Any model that admits income effects also allows for systematic heterogeneity among

individuals as a function of their incomes, and there is a multitude of examples. Morey (1999),

McFadden (1996), and Herriges and Kling (1997) discuss the theoretical underpinnings of income

effects in logit models, and two empirical examples include Morey, Rowe, and Watson (1993),
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and Morey, Buchanan, and Waldman (1999). Models with income effects are not investigated

here. Also, another literature investigating heterogeneity is emerging that includes latent

constructs and psychometric measures based on individual attitudes and perceptions in addition to

demographic factors in discrete-choice models. McFadden (1986) initiated work in this area to

develop market forecasts. See Boxall and Adamowicz (1998) for an application to explain

wilderness park choice, and also Ben-Akiva et al. (1997).

The main advantage of this technique is it allows $i to vary across individuals in a

systematic way as a function of individual characteristics. The researcher can predict how

different types of individuals are affected by different policies, and consequently reach conclusions

about distributional impacts.6 The primary drawback is that $i may not, in fact, vary as a function

of observable individual characteristics, and model results are expected to be sensitive to the way

in which the parameters and data are allowed to interact. Also, multicollinearity is often a problem

with too many interactions.

Random Parameters Logit (RPL)

Another way to incorporate heterogeneity through $ is to assume that one or more parameters is

drawn from a known distribution, although the unique values of the parameters for a given

individual in the sample cannot be known. RPL is a special case of mixed logit because the

probability of observing an individual’s sequence of choices is a mixture of logits with a

prespecified mixing distribution (Revelt and Train 1998). 

Two recreational site choice examples using RPL with revealed preference data are a

partial demand system of fishing site choice in Montana (Train 1998) and a complete demand
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system of participation and site choice in the Wisconsin Great Lakes region (Phaneuf, Kling, and

Herriges 1998). The random parameters model presented later, unlike the complete demand

system of Phaneuf, Kling, and Herriges, addresses preferences for unobserved characteristics.

Both of these studies find that randomizing parameters significantly improves model fit and

significantly affects consumer surplus estimates for changes in environmental quality. RPL has

also been applied to choice experiments to model demand for a wide array of commodities and

environmental amenities, including alternative-fuel vehicles (Brownstone and Train 1999);

appliance efficiency (Revelt and Train 1998); forest loss along the Colorado Front Range resulting

from global climate change (Layton and Brown 1998); and the level of preservation of marble

monuments in Washington, DC (Morey and Rossmann 1999).

RPL addresses heterogeneity across the population without having to confront the

sources, which is both its strength and weakness. As noted by Adamowicz, Louviere, and Swait

(1998), RPL provides more flexibility in estimating mean utility levels, but little interpretability in

terms of distributional impacts associated with heterogeneity.

Like interaction, the RPL model specification assumes the $i’s vary across anglers rather

than being restricted to be the same as assumed earlier. The coefficient vector for each individual

is expressed as the sum of two components, the population mean vector (b) and an individual

vector of deviations (Li): . By assuming that Li is equal over choice-occasions for each

individual, the unobserved components of utility become correlated.7 By allowing for preference

heterogeneity in this fashion, the restriction of independence associated with the nonrandom logit

model is removed (Phaneuf, Kling, and Herriges 1998).8 Train (1998) expects such persistence in

the unobserved factors that affect utility over time and over sites.
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(5)

(6)

(7)

If each angler’s preferences (the $i’s) were known, the probability of observing angler i’s

choices over the season would be: 

However, the individual deviation vector Li is unobservable. Only the PDF f($) is assumed to be

known, so the joint probability of observing angler i’s choices conditioned on L is the integral of

Equation 5 over $:

where 2 represents the parameters of the distribution of $. Vji is no longer deterministic, but is

now a random variable. Analytical evaluation of this integral is generally not possible, but

advances in computer simulations allow for easy approximation based on a large number of

random draws, R, from f($) using a pseudo-random number generator:9

where $r is a single draw from f($), and SPi is the simulated probability of observing the

individual’s choices. 
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Heterogeneity of the Stochastic Component

The interaction and RPL methods address heterogeneous preferences by allowing $ in the

conditional indirect utility functions to vary across the population. Another strategy is to allow for

heterogeneity in the stochastic components, the ,’s. Although it is assumed that all individuals

have the same $’s, and, therefore, expected behavior of two individuals with the same

characteristics would be identical, the assumption that each individual’s ,’s are drawn from the

same distribution is relaxed. The assumption that the ,’s are independent across choice occasions

is retained, but different individuals can have different error variances . As a result, different

individuals are allowed to have different levels of noise in their decision-making (for example, see

Johnson and Desvouges 1997).

As discussed in the initial section on the logit model, it is typical to assume that all

individuals have stochastic components drawn from the same distribution. Under this assumption,

all of the individual scales, the si’s in equation 3, are the same and usually normalized to one. To

allow for heterogeneity in the stochastic component, this restriction is relaxed, and individual- or

group-specific s’s are estimated separately, or s can be randomized as in the RPL, the latter being

a new method proposed in this paper. One scale must be normalized (to one or some other value)

to achieve identification in the model. Note that si is inversely proportional to . Therefore, an

individual with a small (large) amount of noise in the decision process will have a relatively large

(small) si, and the model will predict the individual’s choices relatively well (poorly). 

Allowing s to be heterogeneous is empirically indistinguishable from parameter

proportionality (Louviere 1996); that is, all $i’s are scaled up or down proportionately across

individuals, as shown in equation 3. In that sense, the methods in this section are more restrictive
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than either RPL or interaction. While heterogeneous scales require parameters to vary only up to

a factor of proportionality across individuals, the other methods allow more general variation.

Several studies allow for differing levels of noise in different data sets or resulting from

different data-generating processes, rather than to admit unobserved heterogeneity across

individuals.10 Incorporating heterogeneity of preferences through s is a much different exercise

that also presents new challenges. For example, when merging k data sets, only k - 1 scale

parameters need to be estimated, where k is some small integer. Preference heterogeneity may

require that a different si be estimated for every individual, or subsets of individuals, where

grouping is nonrandom and based on logic or some expectation.

A new random scale method is an appealing way to circumvent the problems associated

with estimating a huge number of individual-specific s’s. First, it may be difficult or impossible to

estimate a different  and its standard error for each individual in the sample. RP data sets may

have many corner solutions and limited variability across the data, and attempting to estimate

individual-specific parameters may be asking too much. A finite ML estimator of s may not exist

for those who make purely random choices, or for those whose choices are completely explained

by $, because the likelihood function may be continuously increasing as si 6 0 or si 6 4. Second,

even if individual scales could be estimated, they would provide no information on why a given

individual’s error variance is high or low. Using a random scale parameter, in a similar way as the

random preference parameters in the RPL, allows for heterogeneity across individuals in the

variance of the stochastic term, but it requires estimating only enough parameters to characterize

the distribution of the scales (e.g., two for the lognormal distribution) rather than n - 1 different

individual-specific scale parameters. Third, the random scale does not require estimation of the
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(8)

(9)

(10)

scale parameter as a function of individual covariates, which may lead to specification bias if the

functional form is wrong.

Let the utility angler i receives during choice-occasion t from alternative j be:

where si is a scale parameter that varies across individuals. The vector xji contains factors

observed by the researcher, $ reflects the relative magnitudes of the marginal values of these

observed factors to anglers, ,jti captures factors the researcher does not observe, and si reflects

the importance of the observed factors relative to the unobserved factors. The model allows

people to differ in the importance (and value) they place on factors the researcher observes

relative to the unobserved influences. A person whose choice is greatly affected by unobserved

factors has a smaller si than a person whose choice is mostly affected by observed variables.

If the relative importance each angler places on observed variables (the si’s) were known,

the probability of observing angler i’s choices over the season would be: 

However, under the assumption the si’s are unobservable, and only the PDF g(s) is known, the

joint probability of observing angler i’s choices is the integral of Equation 9 over s:
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where Q represents the parameters of the distribution of s.

Individual-specific Preference Parameters

In theory, it is possible to estimate individual-specific models in which no parameters are shared if

the quantity of data is sufficient and the data exhibit enough variation.11 Usually, the data do not

allow identification or estimation of all of the parameters at the individual level. Successful

estimation of individual-specific models is most likely using state preference data, with many

observations per individual that exceed the number of parameters to estimate.12 Individual-specific

recreation demand models using RP data are difficult to estimate because of the typical lack of

variation in choices and a small number of trips taken by many individuals. Interaction and RPL

are good alternatives to individual-specific $i’s to admit heterogeneity in Vji.

Repeated Logit Models of Salmon Fishing Participation and Site Choice that Allow

Heterogeneity

The empirical application is a repeated logit recreation demand model of Atlantic salmon fishing

participation and site choice. Some statistics summarizing the data set are included in table 1. The

model is utility-theoretic and complete. Each of the techniques is applied to the model, and

expected compensating variations are estimated for changes in catch.
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Table 1
Observed Trips, Expected Catch Rates, and Actual Fishing Costs 

for Eight Atlantic Salmon Fishing Sites

River Group Observed Trips Expected Catch Rate per Trip Average Trip Costs1

Maine Rivers:
Penobscot
Machias
Dennys
Kennebec
Saco

1994
544
24
132
136

0.102
0.048
0.058
0.074
0.039

$137
$239
$246
$203
$288

Canadian Rivers:
Nova Scotia
New Brunswick
Quebec

5
17
12

0.948
3.143
2.360

$806
$827
$885

1 Includes value of time; these averages are only for trips actually taken.
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Model 1: A Logit Model of Atlantic Salmon Fishing with Homogeneous Preferences for Site

Characteristics

During a fishing season, an Atlantic salmon angler has a finite number of choice occasions,

assumed to be 100,13 to allocate to nine alternatives, including five salmon river groups in Maine

(Penobscot, Machias group, Dennys, Kennebec group, and Saco), three salmon river groups in

Canada (Nova Scotia rivers, New Brunswick rivers, and Quebec rivers), and a nonparticipation

alternative that allows substitution in and out of fishing. 

The data used to fit the logit model are from a sample of 145 Maine anglers who held

Atlantic salmon fishing licenses in 1988 and were active at these sites. The data set includes

complete trip records on the number of visits each angler took to each of the eight Atlantic

salmon fishing areas (yji). The average angler took about 20 trips to these sites and 14 to the

Penobscot River in Maine alone. The data also include exogenous expected catch rates, angler

incomes, and fishing costs (the pji’s), which vary widely across anglers and sites. Trip costs are

composed of transportation costs, on-site costs, such as guides and lodging, and the opportunity

cost of time, including fishing, travel, and additional on-site time (e.g., waiting time, overnight

time). Finally, the data set includes socioeconomic characteristics for each angler, including age,

years of fishing experience, and whether the angler belongs to a Penobscot fishing club. 

The deterministic portion of angler i’s conditional indirect utility function for fishing at site

j, Vji,  is a function a dummy (Dj)  that equals one if the site is in Canada, the budget per choice

occasion (Bi), the trip cost to visit site j (pji), and the site-specific expected catch rate: Vji = "0(1 -

Dj) + "0CDj + "p(Bi - pji) + "1(1 - Dj)(catchj) + "1("1CDj)(catchj), j = 1, ..., 8. The expected catch

rates at the Canadian sites are considerably higher than at the Maine sites. To account for this
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difference, the catch coefficient is a step function constructed by multiplying the catch parameter

("1) by a catch-scale parameter ("1C) if the site is in Canada. The price parameter, "p, is

interpreted as the marginal utility of money. The conditional indirect utility function for

nonparticipation, V9i, is a function of a constant, the budget per-choice occasion spent on the

numeraire if fishing is not chosen, and socioeconomic characteristics of the angler: V9i = "09 +

"p(Bi) + "2agei + "3yrsi + "4clubi, where age is the angler’s age, yrs is years of fishing

experience, and club equals one if the angler is a member of the Penobscot fishing club.14 This is a

no-income-effects model; the budget cancels out of the choice-occasion probabilities.

The ML algorithm (version 4.0.18) in Gauss (Aptech Systems 1996) was used to find the

estimates of the parameters that maximize the likelihood of observing the sample trip records,

given exogenous trip costs, expected catch rates, and angler characteristics. The parameters are

all significant and are reported in table 2. The estimated parameters indicate that site visitation

increases in expected catch and is a decreasing function of trip cost. The catch step function

shows that increases in catch are more highly valued at Maine sites (where catch is lower) than at

Canadian sites (where catch is higher). Socioeconomic characteristics such as age, years of fishing

experience, and club membership are all important in the participation decision of how often to

fish. Older anglers tend to fish less, and those with more years of experience or belonging to a

fishing club tend to fish more.
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The Penobscot River in Maine is a very popular fishing site with relatively high catch for a

Maine site. Expected compensating variations, E(CV)s, are estimated for three environmental

changes at the Penobscot for all models: increasing the catch rate 50%, halving the catch rate, and

elimination of the site entirely. Both improvement and deterioration experiments are conducted

because million-dollar fish stocking policies to improve the catch rate and dam projects for

hydroelectric power (which would lower the catch rate) are relevant to the Penobscot. The E(CV)

per choice-occasion for angler i for a logit model with no income effects is simply calculated as:  

where , the expected utility per choice occasion, and the superscripts denote

conditions before and after the change (Morey 1999). The total seasonal E(CV) is the choice-

occasion E(CV) multiplied by 100. Seasonal E(CV)s and confidence intervals for the mean

E(CV)s, simulated using 500 pseudo-random draws based on the estimated covariance matrix of

the parameters, are presented for Model 1 in table 3.15 The mean seasonal E(CV) for increasing

the catch by 50%, for example, is $862, which is consistent with the very avid, serious nature of

these recreational anglers. These anglers also pay high trip costs to go fishing (often in the

hundreds or thousands of dollars).

Mean predicted trips to the Penobscot River under current conditions and for the two

catch scenarios were also computed using the predicted probabilities (see equation 3) multiplied

by the total number of choice occasions and are presented in table 4. Model 1 predicts that mean

trips will increase by over nine if the Penobscot catch is increased by 50%, and decrease by almost

six if the catch is halved.
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Table 4
Mean Predicted Trips to the Penobscot Under Different Penobscot Catch Scenarios

Model Current Conditions Increase Catch 50% Halve Catch

Observed 13.291 NA NA

Model 1 – Homogeneity 12.36 21.56 6.39

Model 2 – Interaction 12.44 22.76 6.02

Model 3 – RPL 14.87 24.54 7.76

Model 4 – Group Scales 12.29 21.46 6.30

Model 5 – Random Scale 12.03 27.95 5.06

1 Data were truncated by number of choice occasions (maximum of 100). Before truncation the mean was
approximately 14 trips.
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Model 2: A Logit Model with the Effect of Catch as a Function of Angler Characteristics

In Model 1, only the participation decision is a function of angler characteristics. In this section,

the model is generalized by making the site-choice decision also a function of angler

characteristics. The change in utility from a change in catch is a linear function of age, years of

experience, and the club dummy. The conditional indirect utility functions for the fishing

alternatives become: Vji = "0(1 - Dj) + "0CDj + "p(Bj - pji) + "1(1 - Dj)(catchj) + "1("1CDj)(catchj)

+ (1(1 - Dj)(agei)(catchj) + (2(1 -Dj)(yrsi)(catchj)+  (3(1 - Dj)(clubi)(catchj)+

(1("1CDj)(agei)(catchj) + (2("1CDj)(yrsi)(catchj) +  (3("1CDj)(clubi)(catchj), j = 1, ..., 8.

Parameter estimates reported in table 2 indicate members of a fishing club are more

concerned with catch, and older anglers are less concerned. Perhaps fishing club members are

more interested in the sporting aspect of fishing, and older anglers are more interested in fishing

for the pure enjoyment of the activity, regardless of what they catch. Some individuals enjoy

fishing for its solitude and relaxation rather than its action and social interactions. Two individuals

in the sample who are older and are not club members have negative marginal utility for catch,

and, thus, negative E(CV)s for catch improvements, which may be due to these factors or simply

be an artifact of the linear model specification. Years of fishing experience is not a significant

variable affecting site choice in Model 2.

Model 2 explains choices significantly better than Model 1, which is also true for Models 3

through 5. The mean E(CV)s for the sample as a whole, reported in table 3, are somewhat larger

in absolute value for all Penobscot scenarios, although the medians are smaller. Note also that the

mean trip response to changes in catch are also greater in Model 2 (see table 4). Club members

tend to have the highest E(CV)s. Older anglers, who are not club members, have E(CV)s for catch
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improvements in the interactive model that are lower than in Model 1. Perhaps the most important

finding is that the range of E(CV)s over the sample is much larger in Model 2. Incorporating

heterogeneity by making utility from catch a function of  socioeconomic characteristics not only

allows the researcher to determine which groups are most affected by environmental changes, but

also allows a much wider range of behavior of and estimated impacts on different types of anglers. 

Model 3: A RPL Model with Interaction

Model 3 is a RPL model that is an extension of Model 2, and, therefore, uses two heterogeneous

methods; heterogeneity of utility from catch is, again, allowed using the same interactions as in

Model 2. In general it is preferable to explain why marginal utilities vary across anglers; it adds

predictive power about the heterogeneity. Therefore, in Model 3, only the constants  "0C and "09

(the Canadian and nonparticipation constants, respectively) are randomized. These constants

incorporate all of the site characteristics not explicitly included in the model, and one would

expect preferences for these characteristics to vary across anglers. It would be possible, of course,

have a catch parameter that is a function of both included angler characteristics and a random

component if that were warranted, but doing so could lead to multicollinearity problems. A

normal distribution was used for both constants because there are no restrictions on the signs, and

because the proportion of possible values decreases for value ranges farther from the mean.16

For Model 3, the conditional indirect utility functions for the fishing alternatives become:

Vji = "0(1 - Dj) + ("0C + L0Ci)Dj + "p(Bj - pji) + "1(1 - Dj)(catchj) + "1("1CDj)(catchj) + (1(1 -

Dj)(agei)(catchj) + (2(1 -Dj)(yrsi)(catchj)+  (3(1 - Dj)(clubi)(catchj)+ (1("1CDj)(agei)(catchj) +

(2("1CDj)(yrsi)(catchj) +  (3("1CDj)(clubi)(catchj), j = 1, ..., 8. The conditional indirect utility
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function for nonparticipation is:  V9i = ("09 + L09i) + "p(Bi) + "2agei + "3yrsi + "4clubi. The

individual deviations from the means for the random parameters are denoted L0Ci and L09i. The

probability of observing angler i’s choices is:

where Li is the vector of deviations for individual i, and N is the bivariate normal density function

with a zero mean vector and a diagonal covariance matrix with elements  and . Numerical 

simulation in Gauss was used to maximize the simulated log-likelihood.17

Model 3 explains choices significantly better than Model 2, and, in addition, F0C and F09

have highly significant asymptotic t- statistics. The parameter estimates for the RPL are reported

in table 2.18 The mean estimates tend to be larger than those from Model 2. In Model 2, the error

term contains the random component (L) of the parameters, so the variance of , is greater than in

Model 3, where L is treated separately (Revelt and Train 1998). Because the value of s is

normalized to one in both models, b increases in Model 3 so that Vji is larger relative to the

variance of the stochastic term. The values of "0C and F0C are 2.97 and 6.65, and the values of "09

and F09 are 4.52 and 2.00. The ratios of the standard deviation to the mean are 2.24 and 0.44,

which match well with the ratios for random parameters in other studies valuing environmental

improvements. The range over 20 parameters in 3 studies is 0.40 to 14.29, with a mean of 2.28

and a median of 1.43 (Train 1998; Phaneuf, Kling, and Herriges 1998; and Layton and Brown

1998). 
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Note also that the significance levels of other Canadian and nonparticipation parameters

are generally lower in Model 3. It is possible the random parameters for Canada and

nonparticipation are picking up heterogeneity effects that were attributed to observed variables in

the nonrandom model. 

For a RPL model, the E(CV) per choice occasion for angler i is obtained by simulating the

value of the integral of Equation 11 over the PDF of $:

Because seasonal E(CV)s are additive and each component can be integrated separately, the

seasonal E(CV) can be computed as the simulated E(CV) per choice occasion multiplied by the

number of choice occasions. The mean and median seasonal E(CV)s from the RPL in table 3 are

statistically significantly higher for all scenarios than for either Models 1 or 2, indicating that

randomization has a significant impact on economic values. The ranges on E(CV)s are also wider.

Responsiveness of the mean number of trips to the Penobscot when catch changes in table 4

(based on simulated probabilities in this model) is comparable to Model 2.

Model 3, with its group-specific random intercepts, causes the random terms within a

group to be more correlated with each other than they are with the random terms in alternatives in

other groups.19 This is a property it shares with nested-logit model; it relaxes IIA in terms of the

ratio of probabilities (see McFadden and Train 1998). For example, consider a representative

angler.20 Model 2 (a nonrandom model) predicts if the catch rate at the Penobscot increases by

50%, trips to all of the other sites will decrease by the same amount (31%), as a result of IIA. In



25

contrast, with Model 3  if the catch rate at the Penobscot increases by 50%, the probability of

visiting any of the other Maine sites falls by 48%, and the probabilities for the Canadian sites all

fall by 16%. IIA is relaxed across the two regions but not within either region. The higher level of

substitution among Maine sites is a reasonable result. To eliminate IIA assumptions entirely,

different random "’s could be estimated for each alternative, rather than for each region. 

Models 4 and 5: Heterogeneity in the Stochastic Component

Three approaches were investigated to allow heterogeneity in the random component of utility: 1)

individual-specific scales; 2) group-specific scales (groups are defined here using socioeconomic

variables); and 3) a random scale parameter. Compared to Model 1, all three resulted in significant

increases in the likelihood function and different monetary values. The results from two of those

models, Model 4 (socioeconomic group scales) and Model 5 (a random scale) are presented

below.

Before estimating Models 4 and 5, we attempted to estimate a model with individual-

specific si’s, but it only converged when a restrictive upper bound was placed on the scales,

suggesting that the likelihood is monotonically increasing in the scale for certain individuals. The

Hessian for this model would not invert, although inversion was obtained separately for $ holding

the scales fixed. When individuals were examined on a case-by-case basis, it was found that about

sixty percent of the individuals in the sample had either scales or standard errors that could not be

estimated. Johnson and Desvousges (1997) also estimate a model with individual-specific scales

using choice experiment data and report difficulties with convergence, although they do not report

the proportion of individuals for whom the model did not converge. These findings are not
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surprising; as noted above, the ML estimator may not exist for some individuals. Models 4 and 5

are two alternatives to the individual-specific method, and both have desirable features.

While individual-specific scales can indicate whether groups of respondents make random

or repetitive choices, or are having trouble with the survey design in the case of choice

experiments (Johnson and Desvousges 1997), the individual scales themselves contain no

information explaining why they vary across individuals. An alternative that does allow the

researcher to reach conclusions about how scale varies across types of individuals is the use of

different scale parameters for different groups (Model 4); this model is much easier to estimate

than a model with individual-specific scales because it has considerably fewer parameters.21

Model 4 examines whether scales vary significantly based on age, experience, and club

status. The Atlantic salmon anglers were divided into eight groups on the basis of the mean values

of age and years of experience (47 and 6.5, respectively) and club status. Each angler was

assigned a corresponding group-specific scale, and one scale was normalized to one to achieve

identification.22 The probability that individual i (in group gi, gi 0 [1, ..., 8]) will choose alternative

j on choice-occasion t is:

The estimated parameters are reported in table 2. For models with s’s that vary, E(CV)s

are a function of the scales:23
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Again, the mean E(CV)s are higher for Model 4, but only slightly as compared to Model 1. They

are not significantly different from the Model 1 means. Changes in trips are also similar.

The club members as a group have the smallest random-component variance, which

suggests that their preferences are well-refined as a function of observable variables included in

the model. This is consistent with membership of a fishing organization. Of club members,

younger anglers have smaller random components, but of the nonclub group, older anglers have

smaller random components. The group scales range from 0.94 to 1.27.

Model 4 is estimated under the assumption that $ does not vary across anglers, only 

varies. Louviere (1996) notes that parameter proportionality is retained consistently across

different types of data sets in numerous studies. Even in cases where parameter proportionality is

statistically rejected, Louviere suggests that modeling only error variability will account for most

of the heterogeneity. Group-specific models may be identified if there are multiple individuals in

each group with adequate variability in choices and with each facing a large number of choice

occasions. Group models can be used to test the hypothesis of parameter proportionality by

adding up the log-likelihoods across the group models and comparing to a model with group-

specific scales (Swait and Louviere 1993). Model 4 could not be tested for parameter

proportionality because we could not estimate a separate model for each group.24

Model 5 takes a different approach. While it is assumed that the s’s vary across people, it

is also assumed that they vary unsystematically from the researcher’s perspective. Using a similar

procedure to Model 3, s is assumed to be a random scale parameter with some distribution. The

lognormal distribution is chosen to restrict si > 0 ¼ i. To obtain identification, the median scale is

fixed at one (by setting the mean of ln(s) = 0). Those making random choices with disregard to
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observed factors will have smaller scales; those with crystallized preferences for whom the model

predicts well will have larger scales.

Again, 2,500 draws were used to minimize simulation noise. Given the lognormal

distribution, the following formulas can be used to determine the mean and standard deviation of

the random scale: E(s) = exp(FRs2/2); and Fs = exp(FRs2/2) × Þ[exp(FRs2) - 1], where FRs is the

estimated standard deviation of ln(s). The mean s is 1.23, and the standard deviation of s is 1.99.

E(CV)s were simulated, and the mean E(CV) for increasing the catch rate is comparable to Model

1, although the range is much larger. For the site-deterioration scenarios, the means and medians

are significantly smaller, possibly due to the fact that the random scale affects the price parameter.

Model 5 yields the greatest responsiveness in mean trips to changes, both increases and decreases,

in the Penobscot catch rate in table 4.

In Conclusion

Several methods to incorporate heterogeneous preferences have been proposed to generalize the

restrictions inherent in assuming homogeneity. These methods address four broad categories of

heterogeneity: 1) systematic heterogeneity in the deterministic component of utility; 2) random

heterogeneity in the (formerly) deterministic component; 3) systematic heterogeneity in the

stochastic component; and 4) random heterogeneity in the stochastic component. While each of

these types is dealt with individually in this paper (with the exception of Model 3 which has both

random parameters and classic heterogeneity), multiple types could be dealt with at once to

reduce model restrictiveness and to allow for a much richer treatment of heterogeneity. An even

more general model could be envisioned that combines the interaction and random parameters of
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Model 3 with the random scale of Model 5. Incorporating heterogeneity results in larger ranges in

the E(CV)s across the sample, which is an implication of the model allowing for a wider range in

individual behavior. 

Systematic heterogeneity methods should be used, where possible, to allow the researcher

to reach conclusions about subgroups of the population, which may be relevant for environmental

policy targeting different types of recreationists. Systematic heterogeneity allows the researcher to

assess the distributional impacts of policies. However, the random logit scale parameter provides

the researcher a way to allow for variation in the distribution of the random component across

individuals without the potential biases associated with estimating the scale as a function of

covariates if the wrong functional form is used, or the difficulties associated with individual-

specific scales.

Final model selection can depend on a mix of economic theory and intuition combined

with empirical comparisons. In developing a model with heterogeneous preferences, it is

important to consider the types of individuals in the sampling frame. How they differ in terms of

geographic proximity; socioeconomic variables, such as income and education; avidity in terms of

dependent variables such as number of recreational trips; and how responses differ to attitudinal

questions, may provide insight on whether (and how) preferences should be expected to vary

across individuals, and whether those variations can be observed. These factors, plus written and

verbal comments, might be used to assess the level of coherence in decision-making and interest in

the activity, and therefore could be used to decide whether iid assumptions about the random

components are reasonable. As heterogeneity features are added to the basic model, their relative

importance and impact can be evaluated not only on the basis of the likelihood function, but other
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factors including predictive power and the robustness of parameters and other model results such

as consumer surplus.

Endnotes

1. In practice the assumption of homogeneity is used because it can often lead to a consistent

estimator of population mean preferences. However, Fowkes and Wardman (1988) demonstrate

by simulation that taste variation may lead to significantly different mean parameter estimates in

the presence of nonlinearities.

2. Morey and Rossmann (1999) have recently examined heterogeneity of preferences using stated

preference (SP) data.

3. Parameter and consumer surplus estimates from Morey, Rowe, and Watson (1993) differ from

the results in this paper because of different functional forms, model assumptions, and sample

subsets.

4. The model can be generalized to allow time-variant explanatory variables, leading to a more

complicated likelihood function. 

5. For a comprehensive discussion of the extreme value distribution and its application to discrete-

choice models, see Morey (1999).

6. Benefits can vary widely as a function of individual type. See, for example, Morey et al.

(1999b).

7. Hausman and Wise (1978) were the first to incorporate correlation across choice occasions in

the context of a random probit model.
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8. Although the unobserved components of utility are correlated across choice occasions for a

given individual, the utility for a choice occasion is not a function of decisions made in other

choice occasions. For an example of a model with dynamic recreational decision-making, see

Provencher and Bishop (1997), where time elapsed since the last fishing trip affects the trip

decision.

9. If only a few elements of $ are randomized, other techniques to evaluate the integral, such as

Gaussian quadrature, may be used to increase speed and accuracy (Abramowitz and Stegun 1965;

Breffle, Morey, and Waldman 2000). See Stern (1997) for a discussion of simulated ML and its

advantages.

10. For example, Swait and Louviere (1993) propose a test for multinomial logit parameter

comparisons using identical utility specifications but different data sources. Louviere and Swait

(1997) propose a nonparameteric approach for estimating scale parameters when different data

sets are aggregated. Swait, Louviere, and Williams (1994) use scaling to explain differences in the

magnitudes of unexplained variance between SP and RP data from the same respondents in a

model of freighter shipping choice to allow for the possibility that SP data reflect tradeoffs more

robustly and, therefore, may contain less noise. Ben-Akiva and Morikawa (1990) also examine the

differences between RP and SP data-generating processes using scales.

11. A consistent estimator of slope parameters in models with some individual-specific parameters

and some shared parameters does not exist. Chamberlain (1984) demonstrates that a unique

feature of the logit formulation is the ability to estimate individual fixed-effect constants without

introducing inconsistency in the other shared parameters. This result does not extend to slope

parameters in the logit model or to the probit model. 
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12. For examples, see Johnson and Desvousges (1997), and Beggs, Cardell, and Hausman (1981).

Estimating a large number of individual-specific coefficients is always a daunting task. For

example, about one-fourth of the individuals are nonconvergent in the first study, and about half

have undetermined coefficients in the second study. 

13. Over 97% of sample anglers took 100 or fewer trips during the season. 

14. The three constants, "0, "0C, and "09, were included to account for the effects of any

unobserved variables in the participation decision and the choice of region. The model was

identified by setting "0 equal to zero. Note that because the conditional indirect utility function for

nonparticipation is a function of angler characteristics, Model 1 does allow preferences to be

heterogeneous in the classic sense to some degree in terms of the participation decision of how

much to fish, although the model is called “homogeneous.” Modeling participation as a function

of demographic variables is common in the recreation demand literature.

15. Also, estimated mean E(CV)s are compared for equality across different models that follow

using Mansfield’s (1980) two-sample test of means.

16. Distributional assumptions are simply approximations of the true distributions, which are

unknown. The normal and lognormal are typically used, the latter to impose restrictions on a

parameter’s sign. Train (1998) uses a lognormal distribution for the parameter on fish stock to

constrain it to be positive (i.e., all anglers are assumed to gain utility from catching fish), but

Phaneuf, Kling, and Herriges (1998) use a normal distribution. Train (1998) also allows the price

parameter to be random and lognormally distributed. Revelt and Train (1999) and Layton and

Brown (1998), however, acknowledge the potential undesirable effects on the distribution of the

E(CV)s as a result of a random price parameter (because it is in the denominator of the CV
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formula), and hold the price parameter fixed. Phaneuf, Kling, and Herriges (1998) also hold the

marginal utility of money fixed. RPL results may be sensitive to the distributional assumptions.

For example, in the Atlantic salmon model, both normal and lognormal distributions for the catch

parameter were investigated in preliminary analyses. E(CV)s were found to be highly sensitive to

the standard deviation of the catch parameter, especially in the lognormal case. The long right tail

combined with the nonlinearity of the E(CV) calculation led to unrealistically enormous economic

values.

17. A comment is warranted about the choice of the number of repetitions, R, which is not

examined extensively in the literature. The simulated probability is unbiased with only one draw of

$, although the simulated logarithm of the probability, and therefore the simulated log-likelihood

function, are biased. Increasing the number of repetitions reduces the bias, increases the accuracy

of the simulator, and reduces simulation noise (Layton and Brown 1998). The number of draws

should be large enough so that the model parameters and E(CV)s are insensitive to different

random number draws. A total of 2,500 draws was used in the integration simulators in this

paper, so that most model parameters did not vary at two or three significant digits. Perhaps more

importantly, mean E(CV)s changed by less than 1%, whereas with only 100 draws, they changed

by more than 10%. Note that this number of draws is considerably larger than the numbers

reported in other studies, which range from 250 to 1,000, although one can expect the

appropriate number to vary with the study. Brownstone and Train (1999) examine the sensitivity

of average probabilities, the log-likelihood function, and parameter gradients to different numbers

of draws and different sets of random numbers (i.e., different values for the random number
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generator seed), but hold the estimated parameters constant as they conduct the tests (i.e., a new

model is not estimated for every value of the seed).

18. Note that the RPL software developed by Kenneth Train was not used to estimate Model 3.

In this study, site characteristics do not vary over choice occasions, so the coding of the

likelihood function was simpler than that coded by Train. Programs and data can be obtained from

the first author.

19. By allowing the Canadian and nonparticipation constants to be random, the model addresses

heterogeneity between individuals in terms of choosing a Canadian site over another alternative (a

very small number of anglers account for the majority of Canadian trips, and most anglers did not

visit Canada at all), and heterogeneity in terms of avidity (total fishing trips vary widely across

anglers in the data). It would be possible to fix one of these parameters (for identification) and

instead estimate a random Maine parameter, which would account for heterogeneity in choosing

Maine over another alternative. Results from such a model would be expected to differ. 

20. For this example, the angler is 63 years old, has fished for 11 years, is a member of the

Penobscot fishing club, faces low trip costs to the Penobscot of $37, and took 4 trips to the

Penobscot. 

21. Note that an alternative to group scales would be to estimate scales as a nonnegative function

of individual characteristics (see, for example, Cameron and Englin 1997).

22. The scale was fixed for the younger, inexperienced anglers who are not members of a club.

They are the most numerous and took approximately the average number of trips for the sample.

As a result, they had a large influence on the likelihood function of Model 1, the source of the

starting values for Model 4.
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23. If there is only one alternative in each state of the world for the proposal being evaluated, the

s’s drop out of the formula for E(CV), although the estimation of $ is still affected by the

presence of heterogeneous scales in the likelihood function. 

24. Of eight group-specific models using the group definitions listed above, inversion was

obtained for only two, primarily because of the small number of anglers in some groups and the

small number of trips taken to the Canadian sites (only 34 across the sample, and 0 in several

groups).
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