
1. For the random parameters models, estimated mean E(CVG) is reported.

2. If instead of using the 1998-level catch rates (recall that the catch rate is the reciprocal of the average time to
catch a fish), the 13-year averages from 1986 to 1998 were used, predicted days and consumer surplus per
fishing day would increase by about 16%. Therefore, using the 1998 levels results in conservative estimates of
days and damages.

APPENDIX D
MODEL VARIATIONS

This appendix presents model variations and reports estimation results. In Section D.1 models
explaining choices from the alternative pairs using only the SP data are derived. These models
assume both homogeneous and heterogeneous preferences. In Section D.2, heterogeneous
preferences are introduced into the full model covered in Appendix B. A general finding in all of
these variations is that using only SP choice data or allowing for preferences to vary across
individuals has little effect on estimated mean damages from FCAs — in most models mean
damages do not vary significantly from each other. The notable exceptions are the random
parameters specifications and a specification that allows the marginal utility of money to vary with
individual characteristics, both giving higher damage estimates.

Estimated mean compensating variations for many of the models discussed in detail below are
summarized in Table D-1 for a change in FCA level from Level 4 to Level 1 (no FCAs). The
estimated mean CVG is reported for all models,1 and the estimated mean E(CVF) is reported for the
models allowing substitution in and out of Green Bay to other sites. Recall that the estimated
mean CVG for the full model with no heterogeneity is $9.75, and the estimated mean E(CVF) is
$4.17. Along with mean consumer surplus, 95% confidence intervals for the means are reported.
These ranges were simulated using 500 parameter draws from the estimated variance-covariance
matrix.

Mean predicted Green Bay days under current and baseline conditions are also presented in
Table D-1 for all of the models allowing substitution from other sites. They are computed by
multiplying the model predicted probability of fishing Green Bay under current conditions by
observed 1998 open-water fishing days at all sites in 1998, so total days are held constant.2 All
models closely predict the current mean: over the sample, the mean is 10.0, and predictions range
from 10.0 to 10.9. The models are roughly consistent in predicting how mean days will increase
with cleanup. Predictions in increased days range from 0.4 to 1.2 days; that is, the increases in
percentage terms are from 4% to 15%.
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D.1 A-B MODELS USING ONLY THE SP DATA FROM THE

A-B CHOICE QUESTIONS

In this section models are presented that explain only the choices from the pairs of Green Bay
alternatives with different site characteristics, conditional on fishing Green Bay. Only the SP data
on site selection from the choice pairs (A versus B) are used; none of the SP or RP data on
planned or actual numbers of Green Bay days are used. These models are called A-B models, and
while their parameter estimates are consistent, the omission of the additional data on days reduces
efficiency of the estimates. Further, because the A-B model does not allow substitution out of
Green Bay fishing to other sites, only the CV per Green Bay fishing day, CVG, can be estimated, as
was explained in Appendix C.

D.1.1 A-B Model with Homogeneous Preferences

Initially, consider an A-B model with preferences that do not vary across individuals. Assume that
the indirect utility function for the choice pairs is identical to that of the full model developed in
Appendix B (see Equation 1 in Appendix B). The likelihood function is simply the portion of the
likelihood in Appendix A that explains choice of alternative from the SP pairs:

(1)L k i m j J x x Pij ij ij ij
k

j

J

i

m
ij( 1 1 )1 2, ,..., , ,... | , , ,= = =

==
∏∏β σ ε

11

To estimate this model, was fixed at . As a result, the expression disappears fromσ ε 1 2/ 2σ ε

the likelihood. Parameter estimates and the asymptotic t-statistics are presented in Table D-2. The
estimated model predicts approximately 73% of the pairs correctly, and all of the parameters are
statistically significant with the expected sign. Also, the parameter estimates are similar to the A-B
estimates from the full model (Appendix B). The calculation of CVG for all A-B models with no
income effects is explained in Appendix C.

For a change in FCAs from current Level 4 to no FCAs results in an estimated mean CVG of
$10.29, which does not vary across anglers. This value is only 6% higher than the value from the
full model of $9.75. However, the reduction in efficiency in the A-B estimate is reflected in the
simulated 95% confidence interval of the mean CVG: $8.10 to $13.22 for the A-B model, as
compared to $8.13 to $11.81. The confidence interval for the A-B model is wider on the
high end.
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Table D-2
Parameter Estimates from Nonrandom A-B Models

Parameter\Model

Homogeneity Heterogeneity

Estimated Parameters (asymptotic t-statistics)

Homogeneous parameters
$y

$p

$t

$w

$b

$FCA2

$FCA3

$FCA4

$FCA5

$FCA6

$FCA7

$FCA8

$FCA9

Heterogeneous parameters
$pg

$tg

$wg

$bg

$FCAg

$pd

$td

$wd

$bd

$FCAd

0.0459 (16.891)
-0.5211 (-16.673)
-0.0281 (-8.732)
-0.0363 (-11.703)
-0.0310 (-9.998)
-0.1770 (-3.672)
-0.2437 (-4.942)
-0.4724 (-9.652)
-0.6698 (-13.703)
-0.4533 (-8.958)
-0.7890 (-17.484)
-1.0772 (-22.733)
-1.1872 (-21.733)

0.0466 (15.381)
-0.4707 (-4.904)
-0.0285 (-3.472)
-0.0192 (-2.447)
-0.0310 (-3.787)
-0.2351 (-3.517)
-0.3210 (-4.935)
-0.6388 (-9.219)
-0.8897 (-12.240)
-0.6030 (-8.975)
-1.0494 (-12.729)
-1.4622 (-13.316)
-1.5970 (-13.866)

-0.1398 (-1.321)
0.0031 (0.351)

-0.0214 (-2.491)
-0.0008 (-0.086)
-0.2868 (-4.706)
8.667e-4 (3.574)

-3.455e-5 (-1.594)
2.424e-6 (0.109)
1.091e-5 (0.598)
-2.981e-4 (1.944)
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D.1.2 Investigating Learning/Fatigue and Positioning Bias

The A-B model with no heterogeneity was then modified to examine whether learning or fatigue
effects exist, and whether there is positioning bias toward the A (i.e., the first) alternative. As the
respondent gains knowledge and understanding of the survey process, the learning effect may
express itself through a decrease in the stochastic variance for initial choice pairs as comparedσ ε

2

to later ones. Recollect there was a practice pair that was not included in estimation. Similarly, if
there are a large number of survey choice pairs, a fatigue effect may set in as the respondent tires
of the data elicitation process. This effect may be manifested as an increase in noise for choice
pairs toward the end of the process.

Two A-B methods were employed to investigate the presence of learning and fatigue. First, a
model was estimated in which was fixed at  for the middle four choice pairs (j 0 [3, 4,σ ε 1 2/
5, 6]), but  was separately estimated as an unrestricted parameter for the first two choice pairsσ ε

(j 0 [1, 2]) and the last two (j 0 [7, 8]). Results suggest weak but statistically insignificant learning
and fatigue effects. As compared to 0.707 ( = ), estimated  equals 0.936, and1 2/ σ εj j, [ , ],∈ 1 2
estimated  equals 1.052. Based on a likelihood ratio test, the null hypothesis thatσ εj j, [ , ],∈ 7 8
variances are equal across the choice occasions cannot be rejected. CVG for this model is $9.99,
which is only 2% higher than the estimate from the model with all variances restricted to be the
same.

The second method fixes  at  for all of the choice occasions, but allows  to vary in anσ ε 1 2/ β
unrestricted fashion over the three choice-occasion groups. This method is less restrictive than the
previous method. If parameter proportionality holds, where only varies across choiceβ
occasions by a factor of proportionality, learning and fatigue would be evident if the elements of

were all bigger for j 0 [3, 4, 5, 6] than for the first two or last two choices. Because  is fixedβ σ ε

in estimation at the same value for all three groups, and because only the ratio of and  isβ σ ε

identified in estimation, more noise would show up as smaller values for . The results from theβ
three independently estimated models show that parameter proportionality does not hold, because

does not vary systematically across the choice occasions. A likelihood ratio test indicates thatβ β
is not proportional across choice occasions at conventional significance levels. However, there is
some moderate evidence of fatigue, although no evidence of learning. The estimated CVG, a
weighted average across the choice-occasion groups, is $10.94, which is 12% higher than the
estimate from the model restricting  to be the same across choice occasions. As a result, weβ
maintain that $9.75 is a conservative estimate of damages per day. The CVG estimates separately
for the groups are $8.65 for the early choice occasions, $15.02 for the middle choice occasions,
and $5.06 for the later choice occasions. Note that relative to the $9.75 estimate from the main
model, these are all imprecise estimates.

Finally, an A-B model with no heterogeneity was estimated that included a dummy variable for
whether the alternative selected was the first presented, alternative A. This variable was a
statistically insignificant determinant of choice, so the null hypothesis of no positioning bias could
not be rejected.
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3. For example, the mean CVG for a change from FCA Level 4 to no FCAs for individuals living five miles away
is $13.68 for women and $9.75 for men. Note that the mean compensating variations for all classic
heterogeneous models reported in this appendix are weighted means, where the weights used were either the
individual’s proportion of the sample number of days to Green Bay in 1998 for CVG or the proportion of the
sample number of days to all sites in 1998 for E(CVF). These weights were used because we estimate CV per
Green Bay fishing day or per fishing day, not per angler. 

D.1.3 A-B Models with Heterogeneous Preferences: Interaction

In this section, A-B model parameters are allowed to interact with observed individual
socioeconomic characteristics, the “classic” method of admitting heterogeneous preferences.
Consequently, CVi

G also varies as a function of characteristics. While marginal utilities for changes
in site characteristics and consumer surplus vary in plausible ways as a function of individual
attributes, we also find that estimated mean CVG for the sample is quite comparable to that from
the full model or to the A-B model with no heterogeneity. Incorporating heterogeneity at the
A-B level appears to have little effect on mean damages (see Table D-1).

Preliminary analyses and simple statistics for the sample suggested that the A-B choices vary with
gender and distance from Green Bay. Other socioeconomic characteristics were not as important
in the preliminary analysis. Therefore, the effects of catch and FCAs were modeled as functions of
those two variables. The set of FCA marginal utilities is assumed to vary proportionately as a
function of individual characteristics. For example, FCA effects for men are all decreased by the
percentage $FCAg (see Equation 2 below) compared to women. The likelihood function is the same
as in Section D.1.1, with the only exception that now includes interactions with individualVij

kij

characteristics. Specifically:

(2)

V FEE ACT GEND DIST

FCAq GEND DIST ,

ij
k

y jk ljk l
l

i ld i

jk FCAq FCAg FCAq i FCAd FCAq i
q

ij = − + + +

+ + +

=

=

∑

∑

β β β β

β β β β β

( ) [ ( ) ( )]

[ ( ) ( )]

1

4

2

9

lg

where l indexes the fish species for catch (l = 1, ..., 4), ACTl is the average time to catch species l,
q indexes the FCA levels (q = 2, ..., 9; $FCA1 is fixed at zero for identification), FEEjk is the launch
fee for alternative k in pair j, GENDi equals one if angler i is a male, and DISTi is the closest
distance to Green Bay from either angler i’s vacation cabin or home.

This model was found to be statistically superior to the homogeneous A-B model on the basis of a
likelihood ratio test, although the proportion of choices predicted correctly did not change
appreciably. Parameter estimates are reported in Table D-2. The effects of FCAs and catch for
some species were found to vary significantly as a function of gender and distance from Green
Bay. Women were found to have larger FCA effects (in absolute value) and therefore larger
damages.3 They care more about FCAs than men. Conversely, men were found to have a larger
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4. Note that target is correlated with distance (a much higher percentage of yellow perch anglers live close to
Green Bay, and a much higher percentage of salmonid anglers live farther away). An angler is defined here as a
target angler for a species if he fishes for that species “often” or “almost always,” and does not fish for any other
species “often” or “almost always.”

5. Along these lines, omitting extremely avid anglers with a large number of days from the data set prior to
estimation was also not found to have a notable or significant effect on parameter or per-day consumer surplus
estimates.

marginal utility for catching walleye. Marginal utilities for perch catch and FCAs decrease with
distance, while the marginal utility for trout and salmon catch increases with distance at a marginal
significance level (the t-statistic is -1.59). For those traveling to Green Bay from within the eight
targeted counties (within 73 miles), the mean CVG is $10.23, while for those farther away it is
$9.17. Over the entire sample, the mean is $10.15, with a standard deviation of $1.72. The
simulated 95% confidence interval for mean CVG is $7.99 to $12.51. Note that this mean is only
4% higher than the mean from the full model.

Other interaction specifications were run as well, and while some of these generalizations were
statistically significant, uniformly they do not lead to statistically or substantively different
estimates of mean consumer surplus. For example, the effects of FCAs and catch on utility were
also allowed to vary as a function of the angler’s target species. The effects on utility of catch
changes for all four of the target species are all greater for the respective target anglers, and perch
and walleye anglers care more about FCAs than other target anglers or anglers who have no
target.4 The effect on damages was small, however. Effects on utility from FCAs and catch were
not found to vary significantly as a function of the actual number of Green Bay days.5 Finally,
marginal utility of money was allowed to vary across gender and income groups; males and the
wealthy have a significantly lower marginal utility of money. This specification led to a higher
estimate of the weighted mean CVG, $12.36 (27% higher than $9.75). However, the simulated
confidence interval on mean CVG was quite large, [-$19.34 to $35.98], because some draws of the
price parameter for affluent males using the estimated covariance matrix are very small and even
have the wrong sign. Therefore, it is not possible to conclude that $12.36 is significantly higher
than $9.75.

D.1.4 A-B Model with Heterogeneous Preferences: Random Parameters

Two primary issues have motivated the use of random parameters in modeling consumer choice.
First, random parameters provide a way to induce correlation in the stochastic components of
utility within pairs of alternatives and across an individual’s choice occasions. Hausman and Wise
(1978) were the first to model explicitly correlated disturbances. Second, random parameters
allow for preference heterogeneity across individuals without having to model heterogeneity
explicitly as a function of individual covariates. Note that the estimates from our main model,
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6. This is the usual formulation for the random coefficients model. See Hildreth and Houck (1968), Swamy
(1970), and Hsiao (1975).

which does not explicitly model correlation across pairs, are consistent in the presence of such
correlation.

Random parameters have been used to model choice-experiment data for a wide array of
commodities and environmental amenities, including alternative-fuel vehicles (Brownstone and
Train, 1999); appliance efficiency (Revelt and Train, 1998); forest loss along the Colorado Front
Range resulting from global climate change (Layton and Brown, 1998); and the level of
preservation of marble monuments in Washington, DC (Morey and Rossmann, 1999). Three
recreational site-choice examples using simulation with revealed preference data are a partial
demand system of fishing site choice in Montana (Train, 1998), and complete demand systems of
participation and site choice for Atlantic salmon fishing (Breffle and Morey, 1999) and fishing in
the Wisconsin Great Lakes region (Phaneuf et al., 1998).

Model Specification

The random parameters A-B model for Green Bay fishing explicitly estimates the correlation
between disturbances within pairs and across choice occasions, in the spirit of Hausman and Wise
(1978). Assumption 2 from Appendix A is maintained, but assumption 1 is now replaced by:

(3)β β υ υi i i N= + , . ~ ,i i.d. (0 )Σ

where Li is an L × 1 random vector that represents heterogeneity of preferences across
individuals.6 An individual’s marginal utility of an alternative’s characteristic differs from the
average by an additive, mean-zero random variable assumed uncorrelated with the model
disturbance. All J pairs are evaluated by the individual with these marginal utilities. Then:

(4)U x x xij
k

i ij
k

ij
k

ij
k

i ij
k

ij
kij ij ij ij ij ij= ′ + = ′ + ′ +β ε β υ ε( ),

where the new model disturbance is in parentheses. It is straightforward to find the correlation
between these disturbances (and hence the utilities) within a pair and across pairings for each
individual. Within a pair we have:

 (5)E[( )( )] ( ) ( )1 1 2 1 2′ + ′ + = ′υ ε υ εi ij ij i ij ij ij ijx x x x2 Σ ,

and from pair j to pair l we have:

(6)E[( )( )] ( ) ( ).′ + ′ + = ′υ ε υ εi ij
k

ij
k

i il
k

il
k

ij
k

il
kx x x xij ij il il ij ilΣ
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7. See Butler and Moffitt (1982) and Waldman (1985).

With correlation allowed, it is now more convenient for the unit of observation to be the
individual (i), not the individual-pair (i, j) as in the nonrandom model. The probability of
observing the vector of J pair-wise choices is a J-dimensional multinormal probability:

(7)P P K k K k P U U U Ui i i iJ ij i
k

i
k

iJ
k

iJ
ki i iJ iJ= = = = > >− −( ) ( ).1 1 1

3 31,..., ,...,1
1

Substituting the random utility model and the specification for the $i (Equation 3) into Equation 7
yields, after some rearranging:

(8)

P P K k K k

P x x x x

x x x x

i i i iJ ij

i i
k

i
k

i i
k

i
k

i
k

i
k

i i
k

i
k

i i
k

i
k

i
k

i
k

i i i i i i

i i i i i i

= = = =

′ + − ′ + < − ′ −

′ + − ′ + < − ′ −

′

− − −

− − −

( )

[( ) ( ) ( ),

( ) ( ) ( ),

(

3 3
1 1

3

3 3 3

1 1

1 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1

1 1 1 1 1 1

,...,

υ ε υ ε β

υ ε υ ε β

υ

M

i iJ
k

iJ
k

i iJ
k

iJ
k

iJ
k

iJ
kx x x xiJ iJ iJ iJ iJ iJ3 3 3) ( ) ( )].− − + −+ − ′ < − ′ −ε υ ε β

Although evaluation of this integral is more complicated than the equivalent expression in the
nonrandom model, the “equicorrelated” nature of the problem means that Pi can be calculated as
the integral of a joint conditional probability over the density of Li by standard reasoning.7 The J
events are correlated, but the source of the correlation is the individual-specific parameter error
vector Li. This common factor design allows for the computational simplification mentioned
above. The J events in the probability in Equation 8, conditional on Li, are independent, so the
joint conditional probability may be written as the product of the J conditional probabilities. Then
the resulting product is integrated with respect to Li to remove the conditioning:
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where N is the L-variate multinormal density function with mean vector 0 and covariance
matrix 3:
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8. Under normality and the additional assumption of a diagonal 3, the multinormal joint density of Li, N(Li),
factors into the product over k of N(Lik), although no further simplification appears to be possible because each
element of Li appears in each probability. This means that there is no computational advantage in the additional
assumption of a diagonal covariance matrix.

(10)[ ]φ υ π υ υ( ) | | exp ./
i

L
i i= ′−

− −{2 } 2 1

2
1Σ Σ

The order of magnitude of the integral in Equation 9 is determined by the assumptions made for
Var(Li) = 3. Specifically, it is equal to the number of distinct nonzero diagonal elements, which is
the number of parameters assumed to be random.8

For the model of Equation 3, $i = $ + Li, the likelihood of observing ki1, . . ., kiJ is:

(11)L k i m j J x x Pij ij ij i
i

m

( 1 1 )1 2

1
, ,..., , ,..., | , ; , ,= = =

=
∏β σ ε Σ

where the Pi are from Equation 9.

Methods of Estimation

For the purpose of estimation by maximum likelihood, Equation 11 can be evaluated in either of
two ways. First, since the kernal of N(@) is of the form exp(-[@]2), the combination of Equations 9
and 10 with a change of variables ( for the case of one random parameter) can bev = υ συ/ 2
written in the form:

(12)  e g d
−∞

∞ −

∫
ν

ν ν
2

( ) .

This integral can be approximated using Hermite polynomial quadrature, which is fast enough to
be a practical computational method (Butler and Moffit, 1982; Waldman, 1985). Quadrature can
be made as accurate as necessary. If the order of magnitude of the integral is small, which is the
case in the current application [in Hausman and Wise (1978), three parameters are random], the
estimation problem is computationally tractable by quadrature. Second, if quadrature is not
feasible because the order of magnitude is too large, a simulation method could be used (see
Layton and Brown, 1998; Train, 1998; Breffle and Morey, 1999). Using simulation, the integral is
approximated in two steps: first, the joint probability is computed many times using a large
number of random draws from the distribution of L, and then the average is computed. Details on
Hermite quadrature are relegated to Section D.3.
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Estimated Random Parameters A-B Model

The four parameters on the catch rates and the eight parameters on the FCA dummy variables are
all random, and assumed to be normally distributed with zero covariance. There is no classic
heterogeneity in the model. In addition, it is assumed the standard deviations of the catch
parameters vary in proportion to their means, and the same is separately true for the FCA
parameters. That is, the ratio of the mean parameter to the standard deviation is the same for each
of the four catch rates, and for each of the eight FCA levels. Therefore, only two standard
deviations are estimated. Assuming that the standard deviation varies in proportion to the mean is
a common way of dealing with heteroskedasticity, and allows the model to be more general
without making it intractable. This technique is similar to one used by Brownstone and Train
(1999) in a random parameters logit model, where the standard deviation was assumed to be
equal to the mean. The marginal utility of money is not assumed to be random due to undesirable
effects on the distribution of the E(CV)s because the price parameter is in the denominator of the
CV formula (Layton and Brown, 1998; Phaneuf et al., 1998).

Specifically, the conditional indirect utility function for alternative j in angler i’s k-th choice is:

(13)V FEE ACT FCAqij
k

y jk c ci l ljk
l

FCA FCAi FCAq
q

jk
ij = − + + + +

= =
∑ ∑β β ν β β ν β( ) ( ) ( ) ( ) ( )

1

4

2

9

where $c and $FCA are the mean base catch and FCA parameters, respectively; $l is the
deterministic multiplicative factor shifting the mean (and the standard deviation of the random
component) of each catch parameters for the four species; $FCAq is the multiplicative factor for
FCA level q; and $y is the marginal utility of money. The base standard deviations of the catch and
FCA parameters are Fc and FFCA, and $p (for perch) and $FCA2 are fixed at one to achieve
identification of the model.

This model was estimated using both quadrature and simulation, and parameter estimates are
reported in Table D-3. Likelihood ratio tests show that the randomization of the catch and FCA
parameters significantly improves model fit relative to the homogenous nonrandom A-B model.
Results from various model runs show that 500 draws in simulation and 9 evaluation points (see
Section D.3) using quadrature are sufficient for parameter estimates to be stable. That is, at these
levels of draws and points, parameter estimates are the same within 2%, and parameters do not
change significantly with more draws or evaluation points. Therefore, there is virtually no
simulation noise. An interesting finding is that simulation took over three times as much computer
time as quadrature for the 2% threshold.

The ratios of the standard deviation to the mean are 0.66 and 0.92, which match well with the
ratios for random parameters in other studies valuing environmental improvements. The range
over 20 parameters in 3 studies is 0.40 to 14.29, with a mean of 2.28 and a median of 1.43
(Layton and Brown, 1998; Phaneuf et al., 1998; and Train, 1998). The estimated parameters of 
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Table D-3
Parametersa and Consumer Surplus Estimates for Random Parameters A-B Model

Method Hermite Quadrature Simulation

Evaluation points/
random draws 9 500

Mean parameters
$y

$c

$FCA

$p

$t

$w

$b

$FCA2

$FCA3

$FCA4

$FCA5

$FCA6

$FCA7

$FCA8

$FCA9 

0.0555 (15.267)
-0.645 (-11.607)
-0.327 (-4.916)

1.0 (fixed)
0.0480 (6.384)
0.0647 (7.985)
0.0544 (7.295)

1.0 (fixed)
1.618 (6.224)
2.189 (6.519)
2.963 (6.151)
2.463 (5.944)
3.531 (5.857)
4.813 (5.607)
5.300 (5.526)

0.0556 (15.282)
-0.648 (-11.607)
-0.324 (-4.513)

1.0 (fixed)
0.0478 (6.348)
0.0650 (7.989)
0.0544 (7.306)

1.0 (fixed)
1.643 (5.774)
2.215 (5.938)
3.000 (5.608)
2.503 (5.437)
3.578 (5.326)
4.881 (5.098)
5.384 (5.035)

Standard deviationsb

Fc

FFCA

0.428 (-5.270)
0.302 (-5.638)

0.431 (-5.322)
0.296 (-5.238)

E(CV)s
No FCAs v. FCA4 $12.90 $12.89

a. Asymptotic t-statistics are reported in parentheses.
b. t-statistics are for the natural logarithms of the standard deviations. The parameters were exponentiated in
estimation to restrict them to be positive.
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9. Because the standard deviations of all random catch parameters are restricted to vary proportionately with
their means, and the same is true for FCA parameters, these percentages apply to all catch and FCA parameters,
respectively.

10. Note that with random parameters, is a random variable which depends on .CVi
G υi

11. In a multi-site random model, E(CV) would need to be numerically approximated just as the joint probability.

12. If a parameter is not random, its value equals the mean for all individuals.

the normal distributions also imply that 6.6% of the population have catch parameters of the
opposite sign (i.e., they value catch reductions) and 14.0% have FCA parameters of the opposite
sign.9 This result is an artifact of the distributional assumption.

E(CVG) was estimated for a change to no FCAs from FCA Level 4.10 The computation of E(CVG)
for a random parameters model with no income effects and only one alternative in each state of
the world, such as this model, is straightforward. It can be computed as the difference between
utility in the two states divided by the marginal utility of money. Because utility is linear in $, the
formula for E(CVi

G) when some parameters are random (but not the price parameter) and there is
only one alternative in each state is the same as for the nonrandom model:11

(14)
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where $ is the vector of the means of the parameters.12

Note that because the choice of alternatives is not modeled as a function of individual
characteristics, E(CVi

G) = E(CV) œ i. The estimated E(CVG)s for the two approximation methods
are also reported in Table D-3 with the parameter estimates. Estimated E(CVG) is $12.90 using
the model estimated by quadrature, which is higher than $9.75 from the nonrandom model with
RP data. The mean parameters for FCAs are about 20% larger than the estimates from the
nonrandom model, generating higher damages. It is reasonable to expect that making parameters
random may significantly raise or lower E(CV).

The normal specification of L is only one possibility from many choices. A second random
parameters A-B model was estimated under the assumption that the random parameters are
lognormally distributed: and . This distributionalln N(( ) ~ , )β β σci c c ln N(( ) ~ , )β β σFCAi FCA FCA
assumption restricts the marginal utilities for increases in the time it takes to catch fish and the
severity of FCAs to be negative to everybody. Because Hermite quadrature only applies when the
distribution is normal, the simulation method was used with 500 draws. The estimated
distributions of and are -1 × N(-0.598, 0.670) and -1 × N(-1.560, 1.286),ln( )βC ln( )βFCA
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13. Note that mean E(CVG) would have to be simulated if the price parameter is random because the formula is
nonlinear in the price parameter. Train (1998) allows the price parameter to be random and lognormally
distributed. Layton and Brown (1998), however, warn of undesirable effects on the distribution of the E(CV)s as
a result (because the price parameter is in the denominator of the CV formula), and hold the price parameter
fixed. Phaneuf et al. (1998) also hold the marginal utility of money fixed. A small draw of the price parameter
from its distribution will cause the E(CV) associated with that draw to balloon, which overall will have an
upward effect on simulated mean E(CV). 

14. When the RP data on 1998 Green Bay days were included, the model did not converge. This is not
surprising, and nonconvergence does not detract from the quality of estimates from the main model with
homogeneous preferences or any of the convergent models with heterogeneity. Introducing a large number of
additional variables into a model often results in multicollinearity. As a result, parameters cannot be estimated
with precision. The covariance matrix computed as the inverse of the Hessian matrix of numerical
approximations of second order partial derivatives of the log-likelihood will not in fact invert if the Hessian is
nearly singular (i.e., the likelihood function is virtually flat in some dimensions).

15. Results for another A-B-other model, which allows classic heterogeneity in Vo, are also reported in
Table B-1. The parameter and consumer surplus estimates from A-B-other models are similar to the main model.
These estimates are consistent but less efficient than the main model because they do not include the RP data on
Green Bay days.

respectively. The estimated E(CVG) is $17.67, which is considerably larger than $9.67. The larger
value is not surprising since the mean of a lognormally-distributed random parameter  is anβi

increasing function not only of the mean but also the standard deviation :β σ
. The mean $FCAi is -0.480 when the distribution is assumed to beE exp( ) ( ( / ))β β σi = + 2 2

lognormal, as compared to -0.327 under the normal assumption. We do not estimate a model in
which the price parameter is random.13

D.2 VARIATIONS ON MODELS ALLOWING SUBSTITUTION TO OTHER SITES

Classic heterogeneity is incorporated into models allowing substitution in and out of Green Bay in
two ways. In the first of these models, the same specification for was used as presented inVij

kij

Equation 2, where the marginal utilities from FCAs and catch are assumed to be functions of
gender and distance. This model was estimated using the SP data from the choice pairs, the
expected number of days the chosen alternative would be visited from the followup questions to
the pairs, and the RP data on total number of days.14 This model is referred to as an A-B-other
model in Table D-1.15 In the second of the two models, the A-B parameters are assumed to be
homogeneous, but the utility for other, VOi, is assumed to be a function of gender and distance:

(15)V GEND DISTOi i i= + +β γ γ0 1 2 .
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16. For example, consider a male angler and a female angler who each live 5 miles from Green Bay. A man is
willing to pay $8.74 per Green Bay fishing day for removal of FCAs and $3.62 for a doubling of the perch catch
rate. A woman is willing to pay $12.14 per Green Bay fishing day for the removal of FCAs, but only $0.49 for a
doubling of the perch catch rate.

17. As with the A-B model with classic heterogeneity, the estimated mean is a weighted average using the
proportion of sample days as weights.

18. In contrast, a random term in VO adds nothing, because is equivalent to .U VOi o i i= + +υ ε U VOi o i= + η

In this second specification, the RP data on actual Green Bay days is included. Both of these
generalizations significantly increase explanatory power. We were unable to get convergence on a
model using all the data with classic heterogeneity in both  and .Vij

kij VOi

Parameters from the A-B-other model with classic heterogeneity are reported in Table D-4 and
show similarities and differences when compared to the A-B model with classic heterogeneity.
Again, we find that women have a higher WTP for eliminating FCAs in Green Bay. Men have
significantly higher values for increasing catch rates for all species than do women.16 An important
difference in the results is that both FCA and catch effects are larger (in absolute value) for
anglers at a greater distance. Also, the parameters from the A-B-other model with heterogeneity
have much higher t-statistics than the parameters from the A-B model with heterogeneity.
However, the estimated mean CVG of $9.31 is similar to the full model without heterogeneity; it is
less than 5% lower.

Also, the amount of noise in the stochastic term for the other index can be compared to that from
the Green Bay choice pairs, because they are assumed to be uncorrelated, and  is separatelyσ 0

2

estimated. A greater level of randomness is expected for the other site because explicit
characteristics of the site are not included in the model. The estimate of is over 10, which isσ 0

2

greater than ½, the value of .σ ε
2

Results from the full model with heterogeneity in VO show that men and those at a greater
distance are less likely to fish Green Bay. The parameters are in Table D-4. The A-B parameters
from this model are close to those from the homogeneous A-B model and main model, as is mean
CVG of $10.47, which is 7% higher than for the homogeneous full model.17

Because these models allow substitution in and out of Green Bay, mean E(CVF) can also be
compared across the models. For the first heterogeneous A-B-other specification, estimated mean
E(CVF) is $4.16, which is only one cent lower than $4.17 from the homogeneous full model. For
the second heterogeneous specification, mean E(CVF) is $4.13, which is 7% lower.

In theory, a random parameters specification for A-B parameters in the full model could be
specified and estimated, although that is not done.18 Because of the complexity and form of the
likelihood function for the full model, simulation rather than quadrature as a means of estimation 
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Table D-4
Parameter Estimates from Heterogeneous Nonrandom Models

that Allow Substitution out of Green Bay

Parameter\Model
Heterogeneity in A-Ba Heterogeneity in VO

b

Estimated Parameters (asymptotic t-statistics)
Homogeneous parameters
$y

$p

$t

$w

$b

$FCA2

$FCA3

$FCA4

$FCA5

$FCA6

$FCA7

$FCA8

$FCA9

$0

F0 or F0 - ,

F0 - G

Heterogeneous parameters
$pg

$tg

$wg

$bg

$FCAg

$pd

$td

$wd

$bd

$FCAd

(1

(2

0.0446 (10.022)
-0.0545 (-10.527)

0.0206 (6.035)
0.0386 (5.997)
0.0050 (1.227)

-0.0481 (-14.277)
-0.2709 (-80.475)
-0.5409 (-160.440)
-0.6005 (-177.310)
-0.5369 (-159.446)
-0.7633 (-225.195)
-1.0245 (-300.755)
-1.2345 (-365.401)
-0.7483 (-221.829)
3.199 (690.739)c

NAa

-0.3721 (-107.489)
-0.0322 (-5.042)

-0.0539 (-14.550)
-0.0187 (-5.844)

-0.2806 (-83.105)
-8.067e-4(-39.345)
-9.212e-5 (-4.946)
-1.958e-4 (-7.864)
-6.061e-5 (-4.299)
3.842e-4 (16.472)

0.0521 (19.313)
-0.5345 (-13.150)
-0.0244 (-9.296)

-0.0294 (-10.294)
-0.0255 (-8.297)
-0.0846 (-3.425)
-0.2508 (-5.843)

-0.5448 (-14.170)
-0.5853 (-18.225)
-0.5182 (-12.387)
-0.7453 (-25.813)
-1.0403 (-28.068)
-1.1384 (-24.772)
-2.2961 (-24.500)
5.2441 (34.206)c

4.1280 (25.304)c

1.0450 (13.669)
4.581e-3 (16.572)

a. These results are for an A-B-other model that allows substitution out of Green Bay, but the RP data on the actual
number of days at Green Bay is not included. Therefore, F0 - G is not a parameter in this model. In addition, ,0 and ,ij are
assumed to be uncorrelated, so F0 rather than F0 - , is estimated. See text for discussion.
b. These results are for a full model that does include RP data on the actual number of Green Bay days.
c. F parameters were exponentiated in estimation to restrict them to be positive. t-statistics apply to the logged
parameter estimates.
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would be necessary. Estimating a full model with random parameters seems unnecessary because:
1) mean consumer surplus is robust across the different nonrandom specifications; and 2) the
higher consumer surplus values from the random A-B models suggest that damages estimated by
the nonrandom full model are conservative.

D.3 DETAILS ON HERMITE POLYNOMIAL QUADRATURE

Hermite polynomial quadrature is a method of approximating integrals of functions on ( )−∞ ∞,
with integrands that take the form presented in Equation 12. It is based on standard Gaussian
methods. Consider first only one random parameter, in which case the approximation to
Equation 12 is:
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Here, <m is the mth zero of the Hermite polynomial Hm(<), m is the number of evaluation points,
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Abramowitz and Stegun (1964) present <m and Tm for various m in tabular form.

Let  and indicate the elements of this vector with superscripts. That is,  is∆x x xij ij
k

ij
kij ij= −−3 ∆xij

k

the kth element of . Suppose without loss of generality that the single varying parameter is the∆xij
k

first. Then g(<) is:
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For the case of two (or more) varying parameters the elements in the random vector <i in
Equations 9 and 10 are treated separately (and denoted here by subscript), and the numerical
integration is done from the inside out. Without loss of generality, suppose the two varying
parameters are the first and the second. Then Equation 11 becomes:
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where  is the standard deviation of random parameter k. The integral inside the brackets isσυk

similar to the single varying parameter case, and can be evaluated in that manner. Call this
quantity h(<1). It is a function of $, and <1, but not a function of <2 (recall F, is notσ υ1

, σ υ2
,

identified in this model). Equation 9 may be written:

(21)P h di i i i= −
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2exp

which again can be evaluated as a single quadrature. The number of function evaluations increases
exponentially. That is, if five function evaluations are used when there is a single varying
parameter, then 25 are used for two, 125 for three, etc. The approximation of the double integral
is:
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