APPENDIX D
MODEL VARIATIONS

This appendix presents model variations and reports estimation results. In Section D.1 models
explaining choices from the aternative pairs using only the SP data are derived. These models
assume both homogeneous and heterogeneous preferences. In Section D.2, heterogeneous
preferences are introduced into the full model covered in Appendix B. A genera finding in all of
these variations is that using only SP choice data or allowing for preferences to vary across
individuals has little effect on estimated mean damages from FCAs — in most models mean
damages do not vary significantly from each other. The notable exceptions are the random
parameters specifications and a specification that allows the margina utility of money to vary with
individual characteristics, both giving higher damage estimates.

Estimated mean compensating variations for many of the models discussed in detail below are
summarized in Table D-1 for achangein FCA level from Level 4 to Level 1 (no FCAS). The
estimated mean CV© is reported for all models,* and the estimated mean E(CVF) is reported for the
models allowing substitution in and out of Green Bay to other sites. Recall that the estimated
mean CVC for the full model with no heterogeneity is $9.75, and the estimated mean E(CVF) is
$4.17. Along with mean consumer surplus, 95% confidence intervals for the means are reported.
These ranges were simulated using 500 parameter draws from the estimated variance-covariance
matriX.

Mean predicted Green Bay days under current and baseline conditions are also presented in
Table D-1 for al of the models allowing substitution from other sites. They are computed by
multiplying the model predicted probability of fishing Green Bay under current conditions by
observed 1998 open-water fishing days at all sitesin 1998, so total days are held constant.? Al
models closely predict the current mean: over the sample, the mean is 10.0, and predictions range
from 10.0 to 10.9. The models are roughly consistent in predicting how mean days will increase
with cleanup. Predictions in increased days range from 0.4 to 1.2 days, that is, the increasesin
percentage terms are from 4% to 15%.

1. For the random parameters models, estimated mean E(CV®) is reported.

2. If instead of using the 1998-level catch rates (recall that the catch rate is the reciprocal of the average timeto
catch afish), the 13-year averages from 1986 to 1998 were used, predicted days and consumer surplus per
fishing day would increase by about 16%. Therefore, using the 1998 levels results in conservative estimates of
days and damages.
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D.1 A-BMODELSUSING ONLY THE SP DATA FROM THE
A-B CHOICE QUESTIONS

In this section models are presented that explain only the choices from the pairs of Green Bay
aternatives with different site characteristics, conditiona on fishing Green Bay. Only the SP data
on site selection from the choice pairs (A versus B) are used; none of the SP or RP data on
planned or actual numbers of Green Bay days are used. These models are called A-B models, and
while their parameter estimates are consistent, the omission of the additional data on days reduces
efficiency of the estimates. Further, because the A-B model does not allow substitution out of
Green Bay fishing to other sites, only the CV per Green Bay fishing day, CV®, can be estimated, as
was explained in Appendix C.

D.1.1 A-B Modd with Homogeneous Pr efer ences

Initially, consider an A-B model with preferences that do not vary across individuas. Assume that
the indirect utility function for the choice pairsisidentical to that of the full model developed in
Appendix B (see Equation 1 in Appendix B). The likelihood function is simply the portion of the
likelihood in Appendix A that explains choice of alternative from the SP pairs:

Ju
L(kjoi =L...mj=1..3x¢,5¢,b,s ) =O O P (1)

i=1 j=1

To estimate this model, s _ was fixed at +/1/2 . Asaresult, the expression +/2s _ disappears from
the likelihood. Parameter estimates and the asymptotic t-statistics are presented in Table D-2. The
estimated model predicts approximately 73% of the pairs correctly, and all of the parameters are
statistically significant with the expected sign. Also, the parameter estimates are similar to the A-B
estimates from the full model (Appendix B). The calculation of CV© for all A-B models with no
income effectsis explained in Appendix C.

For achange in FCAs from current Level 4 to no FCAs resultsin an estimated mean CV© of
$10.29, which does not vary across anglers. This value is only 6% higher than the value from the
full model of $9.75. However, the reduction in efficiency in the A-B estimate is reflected in the
simulated 95% confidence interval of the mean CV®: $8.10 to $13.22 for the A-B model, as
compared to $8.13 to $11.81. The confidence interval for the A-B model is wider on the

high end.
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Table D-2

Parameter Estimates from Nonrandom A-B Models

Parameter\M odel

Homogeneity

Heter ogeneity

Estimated Parameters

(asymptotic t-statistics)

Homogeneous parameters
By
By
By
Bu
By

BFCA2
BFCAS
BFCA4
BFCAS
BFCAG
BFCA7
BFCAB

BFCAQ
Heter ogeneous parameters

0.0459 (16.891)
-0.5211 (-16.673)
-0.0281 (-8.732)
-0.0363 (-11.703)
-0.0310 (-9.998)
-0.1770 (-3.672)
-0.2437 (-4.942)
-0.4724 (-9.652)
-0.6698 (-13.703)
-0.4533 (-8.958)
-0.7890 (-17.484)
-1.0772 (-22.733)
-1.1872 (-21.733)

0.0466 (15.381)
-0.4707 (-4.904)
-0.0285 (-3.472)
-0.0192 (-2.447)
-0.0310 (-3.787)
-0.2351 (-3.517)
-0.3210 (-4.935)
-0.6388 (-9.219)
-0.8897 (-12.240)
-0.6030 (-8.975)

-1.0494 (-12.729)

-1.4622 (-13.316)

-1.5970 (-13.866)

-0.1398 (-1.321)
0.0031 (0.351)
-0.0214 (-2.491)
-0.0008 (-0.086)
-0.2868 (-4.706)
8.667e-4 (3.574)
-3.455e-5 (-1.594)
2.424e-6 (0.109)
1.091e-5 (0.598)
-2.981e-4 (1.944)
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D.1.2 Investigating L ear ning/Fatigue and Positioning Bias

The A-B model with no heterogeneity was then modified to examine whether learning or fatigue
effects exist, and whether there is positioning bias toward the A (i.e., the first) alternative. Asthe
respondent gains knowledge and understanding of the survey process, the learning effect may
express itself through a decrease in the stochastic variance s 2 for initia choice pairs as compared
to later ones. Recollect there was a practice pair that was not included in estimation. Similarly, if
there are alarge number of survey choice pairs, afatigue effect may set in as the respondent tires
of the data dicitation process. This effect may be manifested as an increase in noise for choice
pairs toward the end of the process.

Two A-B methods were employed to investigate the presence of learning and fatigue. First, a
model was estimated in which s _ was fixed at+/1/ 2 for the middle four choice pairs (j € [3, 4,

5, 6]), buts . was separately estimated as an unrestricted parameter for the first two choice pairs
( €1, 2]) and thelast two (j € [7, 8]). Results suggest weak but statistically insignificant learning
and fatigue effects. As compared to 0.707 (= v/1/2), estimateds , j T [12], equals 0.936, and
estimateds , j 1 [7.,8], equals 1.052. Based on alikelihood ratio test, the null hypothesis that
variances are equal across the choice occasions cannot be rejected. CVE for this model is $9.99,
which is only 2% higher than the estimate from the model with all variances restricted to be the
same.

The second method fixess , at+/1/2 for al of the choice occasions, but alowsb to vary in an
unrestricted fashion over the three choice-occasion groups. This method is less restrictive than the
previous method. If parameter proportionality holds, where b only varies across choice
occasions by afactor of proportionality, learning and fatigue would be evident if the elements of

b were all bigger for j € [3, 4, 5, 6] than for the first two or last two choices. Becauses ., isfixed
in estimation at the same value for al three groups, and because only theratioof b and s, is
identified in estimation, more noise would show up as smaller valuesfor b . The results from the
three independently estimated models show that parameter proportionality does not hold, because
b does not vary systematically across the choice occasions. A likelihood ratio test indicates that b
is not proportiona across choice occasions at conventional significance levels. However, thereis
some moderate evidence of fatigue, although no evidence of learning. The estimated CV©, a
weighted average across the choice-occasion groups, is $10.94, which is 12% higher than the
estimate from the model restricting b to be the same across choice occasions. As aresult, we
maintain that $9.75 is a conservative estimate of damages per day. The CV® estimates separately
for the groups are $8.65 for the early choice occasions, $15.02 for the middle choice occasions,
and $5.06 for the later choice occasions. Note that relative to the $9.75 estimate from the main
model, these are all imprecise estimates.

Finally, an A-B model with no heterogeneity was estimated that included a dummy variable for
whether the alternative selected was the first presented, aternative A. Thisvariable was a
statistically insignificant determinant of choice, so the null hypothesis of no positioning bias could
not be rejected.
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D.1.3 A-B Modeswith Heterogeneous Pr eferences: I nteraction

In this section, A-B model parameters are allowed to interact with observed individua
socioeconomic characteristics, the “classic” method of admitting heterogeneous preferences.
Consequently, CV.® also varies as afunction of characteristics. While marginal utilities for changes
in site characteristics and consumer surplus vary in plausible ways as a function of individual
attributes, we also find that estimated mean CV© for the sample is quite comparable to that from
the full model or to the A-B model with no heterogeneity. Incorporating heterogeneity at the

A-B level appears to have little effect on mean damages (see Table D-1).

Preliminary analyses and simple statistics for the sample suggested that the A-B choices vary with
gender and distance from Green Bay. Other socioeconomic characteristics were not as important
in the preliminary analysis. Therefore, the effects of catch and FCAs were modeled as functions of
those two variables. The set of FCA margina utilities is assumed to vary proportionately as a
function of individua characteristics. For example, FCA effects for men are al decreased by the
percentage PBrc,, (See Equation 2 below) compared to women. The likelihood function is the same
asin Section D.1.1, with the only exception that \/i].kij now includes interactions with individua
characteristics. Specifically:

4
Vi =b, (- FEE,)+ @ ACT;[b, +b,(GEND)+ b, (DIST)]
1=1

(2
9
+ad FCquk[bFCAq + bFCAngCAq (GENDi )+ bFCAdeCAq (DI S-IT)] )

q=2

where | indexes the fish species for catch (I = 1, ..., 4), ACT, is the average time to catch species|,
q indexesthe FCA levels(q =2, ..., 9; Pcn isfixed at zero for identification), FEE, is the launch
feefor alternative k in pair j, GEND, equals one if angler i isamale, and DIST, is the closest
distance to Green Bay from either angler i’ s vacation cabin or home.

This model was found to be statistically superior to the homogeneous A-B model on the basis of a
likelihood ratio test, athough the proportion of choices predicted correctly did not change
appreciably. Parameter estimates are reported in Table D-2. The effects of FCAs and catch for
some species were found to vary significantly as afunction of gender and distance from Green
Bay. Women were found to have larger FCA effects (in absolute value) and therefore larger
damages.® They care more about FCAs than men. Conversely, men were found to have alarger

3. For example, the mean CVC for a change from FCA Level 4 to no FCAsfor individuals living five miles avay
is$13.68 for women and $9.75 for men. Note that the mean compensating variations for all classic
heterogeneous models reported in this appendix are weighted means, where the weights used were either the
individua’s proportion of the sample number of daysto Green Bay in 1998 for CV® or the proportion of the
sample number of daysto al sitesin 1998 for E(CV). These weights were used because we estimate CV per
Green Bay fishing day or per fishing day, not per angler.
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margina utility for catching walleye. Marginal utilities for perch catch and FCAs decrease with
distance, while the margina utility for trout and salmon catch increases with distance at a margina
significance level (thet-statistic is-1.59). For those traveling to Green Bay from within the eight
targeted counties (within 73 miles), the mean CV° is $10.23, while for those farther away it is
$9.17. Over the entire sample, the mean is $10.15, with a standard deviation of $1.72. The
simulated 95% confidence interval for mean CVC is $7.99 to $12.51. Note that this mean is only
4% higher than the mean from the full model.

Other interaction specifications were run as well, and while some of these generalizations were
statistically significant, uniformly they do not lead to statistically or substantively different
estimates of mean consumer surplus. For example, the effects of FCAs and catch on utility were
also adlowed to vary as afunction of the angler’ s target species. The effects on utility of catch
changes for all four of the target species are all greater for the respective target anglers, and perch
and walleye anglers care more about FCAs than other target anglers or anglers who have no
target.* The effect on damages was small, however. Effects on utility from FCAs and catch were
not found to vary significantly as a function of the actual number of Green Bay days.” Finally,
margina utility of money was alowed to vary across gender and income groups; males and the
wealthy have a significantly lower marginal utility of money. This specification led to a higher
estimate of the weighted mean CV®, $12.36 (27% higher than $9.75). However, the simulated
confidence interval on mean CV® was quite large, [-$19.34 to $35.98], because some draws of the
price parameter for affluent males using the estimated covariance matrix are very small and even
have the wrong sign. Therefore, it is not possible to conclude that $12.36 is significantly higher
than $9.75.

D.1.4 A-B Modd with Heter ogeneous Preferences. Random Parameters

Two primary issues have motivated the use of random parameters in modeling consumer choice.
First, random parameters provide away to induce correlation in the stochastic components of
utility within pairs of alternatives and across an individual’s choice occasions. Hausman and Wise
(1978) were the first to model explicitly correlated disturbances. Second, random parameters
allow for preference heterogeneity across individuals without having to model heterogeneity
explicitly asafunction of individua covariates. Note that the estimates from our main model,

4. Note that target is correlated with distance (a much higher percentage of yellow perch anglers live close to
Green Bay, and a much higher percentage of salmonid anglers live farther away). An angler is defined hereas a
target angler for a speciesif he fishes for that species “ often” or “amost always,” and does not fish for any other
species “often” or “amost always.”

5. Along these lines, omitting extremely avid anglers with alarge number of days from the data set prior to
estimation was a'so not found to have a notable or significant effect on parameter or per-day consumer surplus
estimates.
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which does not explicitly model correlation across pairs, are consistent in the presence of such
correlation.

Random parameters have been used to model choice-experiment data for awide array of
commodities and environmental amenities, including alternative-fuel vehicles (Brownstone and
Train, 1999); appliance efficiency (Revelt and Train, 1998); forest loss along the Colorado Front
Range resulting from global climate change (Layton and Brown, 1998); and the level of
preservation of marble monuments in Washington, DC (Morey and Rossmann, 1999). Three
recreational site-choice examples using smulation with reveaed preference data are a partia
demand system of fishing site choice in Montana (Train, 1998), and complete demand systems of
participation and site choice for Atlantic salmon fishing (Breffle and Morey, 1999) and fishing in
the Wisconsin Great Lakes region (Phaneuf et al., 1998).

Model Specification
The random parameters A-B model for Green Bay fishing explicitly estimates the correlation
between disturbances within pairs and across choice occasions, in the spirit of Hausman and Wise
(1978). Assumption 2 from Appendix A is maintained, but assumption 1 is now replaced by:
b, =b +u,,u, i.i.d.~ N(0,S) 3
where v, isan L x 1 random vector that represents heterogeneity of preferences across
individuals.® An individual’s marginal utility of an alternative' s characterigtic differs from the

average by an additive, mean-zero random variable assumed uncorrelated with the model
disturbance. All J pairs are evaluated by the individual with these marginal utilities. Then:

Ui;(ij = bi&ilj(ij + eilj(ij = b(b(iquj t (Ui(b(ilj(ij + eili(ij)’ “)

where the new model disturbance isin parentheses. It is straightforward to find the correlation
between these disturbances (and hence the utilities) within a pair and across pairings for each
individua. Within a pair we have:

E[(u g + e))ug + e = (%) (%), (5)
and from pair j to pair | we have:

E[(u,6" + e, ) (e +ef")]= (%) (X). (6)

6. Thisisthe usua formulation for the random coefficients model. See Hildreth and Houck (1968), Swamy
(1970), and Hsiao (1975).
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With correlation allowed, it is now more convenient for the unit of observation to be the
individua (i), not the individual-pair (i, j) asin the nonrandom model. The probability of
observing the vector of J pair-wise choicesis a J-dimensional multinormal probability:

P = P(K, = ky,....K; = k”) = P(Uilil > Ui?i_ Kl’---’UiIEJ > US_ ). (7)

Substituting the random utility model and the specification for the 3; (Equation 3) into Equation 7
yields, after some rearranging:

P = P(K, = ky,....K, = k.,) =
P[(Ui‘K?I K14 eiglr Iq1) B (Ui‘Kkl‘l + eiliil) <-b (I()ﬁ i )ﬁlil)’
(ui$(i32_ K14 eigzr Iq1) B (Ui‘Kkz‘l + eilgl) <-b q()ﬂsz i )ﬁkzil)’ (8)

(ui ?3 o+ eii_ k”) B (Ui%'ﬁ‘”ei'?) <- b®(>§§' “ . )ﬁljj )]

Although evaluation of thisintegral is more complicated than the equivalent expression in the
nonrandom model, the “equicorrelated” nature of the problem means that P, can be calculated as
the integral of ajoint conditional probability over the density of v, by standard reasoning.” The J
events are correlated, but the source of the correlation is the individual-specific parameter error
vector v;. This common factor design allows for the computational simplification mentioned
above. The J events in the probability in Equation 8, conditional on v;, are independent, so the
joint conditional probability may be written as the product of the J conditiona probabilities. Then
the resulting product is integrated with respect to v; to remove the conditioning:

P= Q) Pled ™ -ef <- bUXE - X)- uOE™ - Xy,

ei? o . eLI;U <- bq(xi:j Ko )QISU)' ui()ﬁ . 'Ijj)lui]f (ui)dui
N 2 3- k; K 3- k; K 3- k. ki (9)
=Q,OPle, - e <-bex ™ - x")- u€x™ - x")luJf u;)d,

¥ < b+u 3 ke k.
= 6 OFIC 50 - X1 @)

where ¢ isthe L-variate multinormal density function with mean vector 0O and covariance
matrix )’

7. See Butler and Moffitt (1982) and Waldman (1985).
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f(u)={2p|S} -* exp[-%ui@lui]. (10)

The order of magnitude of the integral in Equation 9 is determined by the assumptions made for
Var(y) = ). Specifically, it is equal to the number of distinct nonzero diagonal elements, which is
the number of parameters assumed to be random.®

For the model of Equation 3, §; = p + v;, the likelihood of observing ki, . . ., k;; is.
. . 1 2 A
L(k,i=1..,mj=1..,Jx,x;bs,,9)=0OPR (11)
i=1

where the P, are from Equation 9.
M ethods of Estimation

For the purpose of estimation by maximum likelihood, Equation 11 can be evaluated in either of
two ways. First, since the kernal of ¢(:) is of the form exp(-[]?), the combination of Equations 9
and 10 with a change of variables (v=u/ J2s , for the case of one random parameter) can be
written in the form:

Cié " g)dn. (12)

This integral can be approximated using Hermite polynomial quadrature, which is fast enough to
be a practical computational method (Butler and Moffit, 1982; Wadman, 1985). Quadrature can
be made as accurate as necessary. If the order of magnitude of the integral is small, which isthe
case in the current application [in Hausman and Wise (1978), three parameters are random], the
estimation problem is computationally tractable by quadrature. Second, if quadrature is not
feasible because the order of magnitude is too large, a ssimulation method could be used (see
Layton and Brown, 1998; Train, 1998; Breffle and Morey, 1999). Using simulation, the integral is
approximated in two steps: first, the joint probability is computed many times using a large
number of random draws from the distribution of v, and then the average is computed. Details on
Hermite quadrature are relegated to Section D.3.

8. Under normality and the additional assumption of adiagona }’, the multinormal joint density of v;, ¢(v;),
factorsinto the product over k of ¢(v,), although no further simplification appears to be possible because each
element of v, appears in each probability. This means that there is no computational advantage in the additional
assumption of adiagonal covariance matrix.
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Estimated Random Parameters A-B M ode€

The four parameters on the catch rates and the eight parameters on the FCA dummy variables are
al random, and assumed to be normally distributed with zero covariance. Thereis no classic
heterogeneity in the model. In addition, it is assumed the standard deviations of the catch
parameters vary in proportion to their means, and the same is separately true for the FCA
parameters. That is, the ratio of the mean parameter to the standard deviation is the same for each
of the four catch rates, and for each of the eight FCA levels. Therefore, only two standard
deviations are estimated. Assuming that the standard deviation varies in proportion to the mean is
acommon way of dealing with heteroskedasticity, and allows the model to be more genera
without making it intractable. This technique is ssimilar to one used by Brownstone and Train
(1999) in arandom parameters logit model, where the standard deviation was assumed to be
equal to the mean. The marginal utility of money is not assumed to be random due to undesirable
effects on the distribution of the E(CV)s because the price parameter is in the denominator of the
CV formula (Layton and Brown, 1998; Phaneuf et al., 1998).

Specifically, the conditional indirect utility function for aternative j in angler i’ sk-th choiceis:

4 9
Vijkij =b,(- FEE; )+ (b +ng)a b (ACT )+ (beca + Neca)A becag (FCAQy,) (13)
q=2

=1

where B, and B, are the mean base catch and FCA parameters, respectively; B, isthe
deterministic multiplicative factor shifting the mean (and the standard deviation of the random
component) of each catch parameters for the four species; Bec,, is the multiplicative factor for
FCA level g; and B, isthe marginal utility of money. The base standard deviations of the catch and
FCA parameters are o, and orc,, and B, (for perch) and B, are fixed at one to achieve
identification of the model.

This model was estimated using both quadrature and simulation, and parameter estimates are
reported in Table D-3. Likelihood ratio tests show that the randomization of the catch and FCA
parameters significantly improves model fit relative to the homogenous nonrandom A-B model.
Results from various model runs show that 500 draws in simulation and 9 evaluation points (see
Section D.3) using quadrature are sufficient for parameter estimates to be stable. That is, at these
levels of draws and points, parameter estimates are the same within 2%, and parameters do not
change significantly with more draws or evaluation points. Therefore, there is virtualy no
simulation noise. An interesting finding is that simulation took over three times as much computer
time as quadrature for the 2% threshold.

The ratios of the standard deviation to the mean are 0.66 and 0.92, which match well with the
ratios for random parameters in other studies valuing environmental improvements. The range
over 20 parametersin 3 studiesis 0.40 to 14.29, with a mean of 2.28 and a median of 1.43
(Layton and Brown, 1998; Phaneuf et al., 1998; and Train, 1998). The estimated parameters of
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Table D-3

Parameter s and Consumer Surplus Estimates for Random Parameters A-B Model

Method Hermite Quadrature Simulation
Evaluation points/
random draws 9 500
Mean parameters
B, 0.0555 (15.267) 0.0556 (15.282)
B, -0.645 (-11.607) -0.648 (-11.607)
Brca -0.327 (-4.916) -0.324 (-4.513)
By 1.0 (fixed) 1.0 (fixed)
B, 0.0480 (6.384) 0.0478 (6.348)
B, 0.0647 (7.985) 0.0650 (7.989)
B, 0.0544 (7.295) 0.0544 (7.306)
Brcar 1.0 (fixed) 1.0 (fixed)
Breas 1.618 (6.224) 1.643 (5.774)
Brcaa 2.189 (6.519) 2.215 (5.938)
Brcas 2.963 (6.151) 3.000 (5.608)
Brcas 2.463 (5.944) 2.503 (5.437)
Brcar 3.531 (5.857) 3.578 (5.326)
Brcas 4.813 (5.607) 4.881 (5.098)
Brcao 5.300 (5.526) 5.384 (5.035)

Sandard deviations®

O

OFca

0.428 (-5.270)
0.302 (-5.638)

0.431 (-5.322)
0.296 (-5.238)

E(CV)s
No FCAsv. FCA4

$12.90

$12.89

a. Asymptotic t-statistics are reported in parentheses.
b. t-statistics are for the natural logarithms of the standard deviations. The parameters were exponentiated in
estimation to restrict them to be positive.
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the normal distributions also imply that 6.6% of the population have catch parameters of the
opposite sign (i.e., they value catch reductions) and 14.0% have FCA parameters of the opposite
sign.® Thisresult is an artifact of the distributional assumption.

E(CV®) was estimated for a change to no FCAs from FCA Level 4.2° The computation of E(CV°)
for arandom parameters model with no income effects and only one aternative in each state of
the world, such as this model, is straightforward. It can be computed as the difference between
utility in the two states divided by the margina utility of money. Because utility islinear in 3, the
formula for E(CV.°) when some parameters are random (but not the price parameter) and there is
only one alternative in each state is the same as for the nonrandom mode!:**

¥ 1

E(CY®)= 0,1 [0 - X))f @)k,

L (14)

= E[b o= X)),

where f is the vector of the means of the parameters.™

Note that because the choice of alternativesis not modeled as a function of individual
characteristics, E(CV.°) = E(CV) V i. The estimated E(CV®)s for the two approximation methods
are aso reported in Table D-3 with the parameter estimates. Estimated E(CV®) is $12.90 using
the model estimated by quadrature, which is higher than $9.75 from the nonrandom model with
RP data. The mean parameters for FCAs are about 20% larger than the estimates from the
nonrandom model, generating higher damages. It is reasonable to expect that making parameters
random may significantly raise or lower E(CV).

The normal specification of v isonly one possibility from many choices. A second random
parameters A-B model was estimated under the assumption that the random parameters are
lognormally distributed: In(by) ~ N(b,,s ;) and In(bgcy ) ~ N(beca,S £ca) - This distributional
assumption restricts the margina utilities for increases in the time it takes to catch fish and the
severity of FCAs to be negative to everybody. Because Hermite quadrature only applies when the
distribution is normal, the simulation method was used with 500 draws. The estimated
distributions of In(b.)and In(b..,) are-1 x N(-0.598, 0.670) and -1 x N(-1.560, 1.286),

9. Because the standard deviations of al random catch parameters are restricted to vary proportionately with
their means, and the sameis true for FCA parameters, these percentages apply to al catch and FCA parameters,

respectively.
10. Note that with random parameters, CV,® isarandom variable which dependson u; .
11. In amulti-site random model, E(CV) would need to be numerically approximated just as the joint probability.

12. If aparameter is not random, its value equals the mean for all individuals.
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respectively. The estimated E(CV;) is $17.67, which is considerably larger than $9.67. The larger
value is not surprising since the mean of alognormally-distributed random parameter b, isan
increasing function not only of the mean b but also the standard deviation s :

E(b,) =exp(b + (s */2)) . The mean B, is-0.480 when the distribution is assumed to be
lognormal, as compared to -0.327 under the normal assumption. We do not estimate a model in
which the price parameter is random.*®

D.2 VARIATIONSON MODELSALLOWING SUBSTITUTION TO OTHER SITES

Classic heterogeneity isincorporated into models allowing substitution in and out of Green Bay in
two ways. In the first of these models, the same specification for \/ijkij was used as presented in
Equation 2, where the marginal utilities from FCAs and catch are assumed to be functions of
gender and distance. This model was estimated using the SP data from the choice pairs, the
expected number of days the chosen alternative would be visited from the followup questions to
the pairs, and the RP data on total number of days.** This model is referred to as an A-B-other
model in Table D-1.%° In the second of the two models, the A-B parameters are assumed to be
homogeneous, but the utility for other, V;, is assumed to be a function of gender and distance:

Vo = b+ 9,GEND,; +g,DIST;. (15)

13. Note that mean E(CV®) would have to be simulated if the price parameter is random because the formulais
nonlinear in the price parameter. Train (1998) allows the price parameter to be random and lognormally
distributed. Layton and Brown (1998), however, warn of undesirable effects on the distribution of the E(CV)s as
aresult (because the price parameter isin the denominator of the CV formula), and hold the price parameter
fixed. Phaneuf et a. (1998) aso hold the margina utility of money fixed. A small draw of the price parameter
from its distribution will cause the E(CV) associated with that draw to balloon, which overall will have an
upward effect on smulated mean E(CV).

14. When the RP data on 1998 Green Bay days were included, the model did not converge. Thisis not
surprising, and nonconvergence does not detract from the qudity of estimates from the main model with
homogeneous preferences or any of the convergent models with heterogeneity. Introducing alarge number of
additional variablesinto amodel often resultsin multicollinearity. As aresult, parameters cannot be estimated
with precision. The covariance matrix computed as the inverse of the Hessian matrix of numerical
approximations of second order partia derivatives of the log-likelihood will not in fact invert if the Hessian is
nearly singular (i.e., the likelihood function is virtualy flat in some dimensions).

15. Results for another A-B-other model, which alows classic heterogeneity in V,, are also reported in

Table B-1. The parameter and consumer surplus estimates from A-B-other models are similar to the main model.
These estimates are consistent but less efficient than the main model because they do not include the RP data on
Green Bay days.
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In this second specification, the RP data on actual Green Bay days isincluded. Both of these
generalizations significantly increase explanatory power. We were unable to get convergence on a
mode! using &l the data with classic heterogeneity in both \/ijIqu andV .

Parameters from the A-B-other model with classic heterogeneity are reported in Table D-4 and
show similarities and differences when compared to the A-B model with classic heterogeneity.
Again, we find that women have a higher WTP for eliminating FCAs in Green Bay. Men have
significantly higher values for increasing catch rates for all species than do women.*® An important
difference in the resultsis that both FCA and catch effects are larger (in absolute value) for
anglers at agreater distance. Also, the parameters from the A-B-other model with heterogeneity
have much higher t-statistics than the parameters from the A-B model with heterogeneity.
However, the estimated mean CV© of $9.31 is similar to the full model without heterogeneity; it is
less than 5% lower.

Also, the amount of noise in the stochastic term for the other index can be compared to that from
the Green Bay choice pairs, because they are assumed to be uncorrelated, and s 2 is separately
estimated. A greater level of randomnessis expected for the other site because explicit
characteristics of the site are not included in the model. The estimate of s 2isover 10, whichis
greater than ¥4, the value of s 2.

Results from the full model with heterogeneity in V, show that men and those at a greater
distance are less likely to fish Green Bay. The parameters are in Table D-4. The A-B parameters
from thismodel are close to those from the homogeneous A-B model and main model, asis mean
CVE of $10.47, which is 7% higher than for the homogeneous full mode.*

Because these models allow substitution in and out of Green Bay, mean E(CVF) can also be
compared across the models. For the first heterogeneous A-B-other specification, estimated mean
E(CVF) is$4.16, which is only one cent lower than $4.17 from the homogeneous full model. For
the second heterogeneous specification, mean E(CVF) is $4.13, which is 7% lower.

In theory, arandom parameters specification for A-B parameters in the full model could be
specified and estimated, although that is not done.*® Because of the complexity and form of the
likelihood function for the full model, ssmulation rather than quadrature as a means of estimation

16. For example, consider amale angler and afemale angler who each live 5 miles from Green Bay. A man is
willing to pay $8.74 per Green Bay fishing day for removal of FCAs and $3.62 for a doubling of the perch catch
rate. A woman iswilling to pay $12.14 per Green Bay fishing day for the removal of FCAs, but only $0.49 for a
doubling of the perch catch rate.

17. Aswith the A-B model with classic heterogeneity, the estimated mean is a weighted average using the
proportion of sample days as weights.

18. In contrast, arandom term in V,, adds nothing, because U, =V, +u, + e isequivdentto U, =V, +h, .
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Table D-4

Parameter Estimates from Heter ogeneous Nonrandom M odels

that Allow Substitution out of Green Bay

Heter ogeneity in A-B?

Heter ogeneity in V°

Parameter\M odel Estimated Parameter s (asymptotic t-statistics)
Homogeneous parameters
B, 0.0446 (10.022) 0.0521 (19.313)
By -0.0545 (-10.527) -0.5345 (-13.150)
B, 0.0206 (6.035) -0.0244 (-9.296)
Bu 0.0386 (5.997) -0.0294 (-10.294)
B, 0.0050 (1.227) -0.0255 (-8.297)
Breaz -0.0481 (-14.277) -0.0846 (-3.425)
Breas -0.2709 (-80.475) -0.2508 (-5.843)
Prcas -0.5409 (-160.440) -0.5448 (-14.170)
Breas -0.6005 (-177.310) -0.5853 (-18.225)
Prcas -0.5369 (-159.446) -0.5182 (-12.387)
Broar -0.7633 (-225.195) -0.7453 (-25.813)
Brcns -1.0245 (-300.755) -1.0403 (-28.068)
Brcno -1.2345 (-365.401) -1.1384 (-24.772)
Bo -0.7483 (-221.829) -2.2961 (-24.500)
0y OF 0. 3.199 (690.739)° 5.2441 (34.206)°
0o o NA2 4.1280 (25.304)°
Heterogeneous parameters
Bog -0.3721 (-107.489)
By -0.0322 (-5.042)
Bug -0.0539 (-14.550)
Bog -0.0187 (-5.844)
Preag -0.2806 (-83.105)
Boa -8.067e-4(-39.345)
B -9.212e-5 (-4.946)
Bua -1.958e-4 (-7.864)
By -6.061e-5 (-4.299)
Brcad 3.842e-4 (16.472)
Y1 1.0450 (13.669)
Y, 4.581e-3 (16.572)

a. Theseresults are for an A-B-other model that allows substitution out of Green Bay, but the RP data on the actual
number of days at Green Bay is not included. Therefore, o, is not a parameter in this model. In addition, €, and ¢;; are

assumed to be uncorrelated, so o, rather than g, . is estimated. See text for discussion.
b. These results are for afull model that does include RP data on the actual number of Green Bay days.
C. 0 parameters were exponentiated in estimation to restrict them to be positive. t-statistics apply to the logged

parameter estimates.
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would be necessary. Estimating a full model with random parameters seems unnecessary because:
1) mean consumer surplusis robust across the different nonrandom specifications; and 2) the
higher consumer surplus values from the random A-B models suggest that damages estimated by
the nonrandom full model are conservative.

D.3 DETAILSON HERMITE POLYNOMIAL QUADRATURE
Hermite polynomial quadrature is a method of approximating integrals of functionson (- ¥ ,¥)
with integrands that take the form presented in Equation 12. It is based on standard Gaussian

methods. Consider first only one random parameter, in which case the approximation to
Equation 12 is:

Q,&"gM)dn = A w,g0n,) + R, (16)

Here, v, isthe mth zero of the Hermite polynomia H,(v), misthe number of evaluation points,
and w,, is the mth weight, given by:

~ 2™ 'miJp
" R H, ()1 (7
The remainder is:
_ mvp o
Ra _—Zm(Zm)! g (x),0<x <¥. (18)

Abramowitz and Stegun (1964) present v, and w,,, for various min tabular form.

Let Dx; =% 9 - %' and indicate the elements of this vector with superscripts. That is, DX’ is
the k" element of Dx; . Suppose without loss of generdlity that the single varying parameter isthe
first. Theng(v) is:

~
00) = p OF (@ 2" O, - V25,10) (19)

u2

Notice the necessary change of variable to accommodate the fact that the normal kernal is e =
and not e\”
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For the case of two (or more) varying parameters the elements in the random vector v, in
Equations 9 and 10 are treated separately (and denoted here by subscript), and the numerical
integration is done from the inside out. Without loss of generality, suppose the two varying
parameters are the first and the second. Then Equation 11 becomes:

\¥¥

N u
O F(25,) ¥2(- bOX, - ¥25,n,Dx; - V25, n,Dx7)]exp(- 3 )n,, - 20
=1 u

exp(- nl?)dnjj )

¥ ¥

('D ('D> (D~

wheres , isthe standard deviation of random parameter k. The integral inside the bracketsis
similar to the single varying parameter case, and can be evaluated in that manner. Cal this
quantity h(v,). Itisafunctionof B, s ,and v, but not a function of v, (recal o is not
identified in this model). Equation 9 may be written:

= 9, h(n,) exp(- n Z)ch, (21)

which again can be evaluated as a single quadrature. The number of function evaluations increases
exponentially. That is, if five function evaluations are used when there is a single varying
parameter, then 25 are used for two, 125 for three, etc. The approximation of the double integral
IS

My e M

P»pa w,ea W,90m m)u (22)
m=1 emZ =1




