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Resource economists are often asked to value a proposed change at one, and only one, recreational

site; the model we develop and estimate is applicable for those cases. The application is valuing the

elimination of fish consumption advisories on a large bay on Lake Michigan. The model is minimal but

complete: complete in that the choice set is not restricted, minimal in that only two conditional indirect

utility functions are estimated. It is utility-theoretic and one does not have to collect characteristic data

on all of the other fishing sites in the region. Data include the number of trips each individual currently

takes to Green Bay, answers to “would you prefer to fish Green Bay under conditions A or B?” and

how often each angler says they would fish Green Bay under different sets of conditions.
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While there are many exceptions, resource
economists are often asked to value a change at
only a single recreational site; the model we de-
velop and estimate is applicable for those cases.
Many Natural Resource Damage Assessments
(NRDA) are in this category.

The original travel cost models were each
just single-site, single-equation: the demand
for trips to the site as a function of only travel
costs to that site. While these models often
committed theoretical and statistical sins, at-
tention was appropriately directed at the site
of policy interest and one did not need to col-
lect characteristics data on other sites, or even
data on the site in question quality, and every-
thing else, got embedded in the constant term.

Hanemann (1991) showed that with suitable
functional forms these single-site equations
were utility-theoretic. Since these models ex-
cluded site characteristics, they were unable to
make any predictions about what would hap-
pen if the characteristics of the site were im-
proved or deteriorated, and so were unable to
estimate the expected compensating variation,
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E[cv], associated with such changes. One could
derive the E[cv] for a price change or the elim-
ination of the site.

Now recreational demand modelers esti-
mate multiple-site utility-theoretic demand
models that require characteristics data for all
of the sites in the choice set; the reasons for this
practice include the ability to model changes
in a site’s characteristics, the ability to predict
how the demand for other sites will be affected
by such a change, and the ability to value simul-
taneous changes in multiple sites. For discrete
choice models, this means at least J-conditional
indirect utility functions where J is the number
of sites in the choice set. These multisite mod-
els, however, come at a high cost: one needs
characteristic data on all of the sites in the
choice set. If the model has only J-conditional
indirect utility functions, the researcher is able
to estimate only per trip E[cv], not E[cv].1

The latter deficiency can be overcome by in-
cluding an additional alternative in the choice
set, doing something else. In the discrete choice
context, one divides the year into a finite num-
ber of “choice occasions,” such that if one does
not recreate on a choice occasion (visit one of
the sites in the choice set), one has chosen the

1 Per trip E[cv] is our expectation of the angler’s compensating
variation for the policy subject to the constraint that the angler
must take a trip to one of the sites in the choice set. That is, it is
how much the angler would pay (or have to be compensated) per
fishing trip.
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something else alternative. Morey, Rowe, and
Watson (1993) are an early example. Other
examples include Lupi et al. (1998); Breffle
and Morey (2000); Morey, Breffle and Greene
(2001); Morey et al. (2002); and Haab (1996).
In this class of models, there are J + 1 al-
ternatives. Note that no researcher considers
collecting characteristic data on every other ac-
tivity in the world.2 From such models one can
derive E[cv] per choice occasion, which mul-
tiplied by the number of choice occasions in
the year is E[cv]. One still needs characteris-
tics data for all of the sites in the choice set.
We will refer to this type of model as complete
and detailed: complete in the sense that all al-
ternatives are included in the choice set and
detailed in the sense that at least some of the
other alternatives are presented as distinct al-
ternatives rather than all being aggregated into
a generic activity called Other.3 No one will
ever estimate a model that is both complete
and completely detailed in the sense that ev-
ery alternative in the individual’s choice set is
included and modeled as a distinct alternative.

Assume the task (the task we were asked
to perform) was to estimate the E[cv] for a
change in the characteristics of one site and
one site only: in our case, a quite unique site,
Green Bay, a large bay on Lake Michigan. This
required that we estimate a complete model;
that is, a model that did not restrict the in-
dividual to fish Green Bay or even restrict
the individual to fish. At a minimum, this re-
quires a conditional indirect utility function
for fishing Green Bay that is a function of the
fishing characteristics of Green Bay and a con-
ditional indirect utility for doing something
else. In such a minimal model, fishing at other
sites is simply combined with all the non-
fishing alternatives.4 Substitutes are not being
excluded from the model.

Estimation of such a minimal model is not
common practice, but can be a reasonable and
productive modeling choice. One still needs
to collect site data for the site of interest but
not characteristic data on all of the other fish-
ing sites in the region. Our experience is that

2 Of course, one could expand this type of model disaggregating
Other into categories such as bowling, watching TV, and other
pastimes. But why?

3 Note that models with only J-conditional indirect utility func-
tions (one for each site in the choice set) are detailed but not com-
plete. They do not allow the individual to do something other than
fish.

4 Of course, such a model will not suffice if one wants to value
changes at multiple fishing sites (e.g., the effects of acid rain over a
wide region) or how much demand at another site will drop when
one site is improved, but that is not the charge here.

in a region with many fishing sites, collecting
legally defensible data on all of the sites can
cost hundreds of thousands of dollars, or more.
The goal of this article is to develop and
estimate a minimal model and demonstrate
that it is reasonable, utility-theoretic, and cost-
effective.

Only two conditional indirect utility func-
tions are specified: one for using a choice
occasion to take a trip to Green Bay and
one for doing something else on a choice
occasion, Other. As is common practice in
discrete choice models that incorporate partic-
ipation, a fixed number of choice occasions is
assumed.

Estimation requires SP data on fishing
Green Bay under different conditions. The
model will be estimated with SP choice pairs—
“would you prefer to fish Green Bay under
conditions A or B?”—RP (revealed prefer-
ence) data on the actual number of trips to
Green Bay under current conditions, and an
SP (stated preference) frequency question that
asks how often the respondent would fish
Green Bay under other described conditions.5

Lumping all of the alternative activities into
one aggregate is always theoretic, but doing so
will make some uncomfortable: close and dis-
tant fishing sites are being combined with all
other potential substitute activities. Our com-
fort with this minimalist approach was orig-
inally enhanced by the uniqueness of Green
Bay: one alternative is Lake Michigan (an
ocean in comparison); the other alternatives
are the hundreds of small lakes, rivers, and
streams in the region (puddles in comparison).

When the site of interest is unique in its cat-
egory (fishing, climbing, skiing, etc.), a com-
pletely different type of activity may be a closer
substitute for recreation at the site of inter-
est than is recreation at an alternative fishing
site with fundamentally different characteris-
tics. For the first author, mountain biking out of
doors is a closer substitute for fishing the local
stream than is fishing in the local lake. Those
who argue for the inclusion of close substitutes
as distinct alternatives would have to include
mountain biking as a distinct alternative before
they considered including lake fishing as a dis-
tinct alternative. Of course, which activities are

5 SP frequency questions are also called “contingent behavior”
(CB) questions. Few environmental applications have used only
SP frequency data. Most of the applications that have used SP
frequency data have combined it with RP frequency data, as we
do. Examples include Adamowicz, Louviere, and Williams (1994);
Englin and Cameron (1996); Nester (1998); Rosenberger and
Loomis (1993); Eiswerth et al. (2000); and Grijalva et al. (2002).
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close substitutes for the site-specific activity in
question are likely to vary across individuals,
making the issue of which to include as distinct
substitute activities even more of a morass.

However, our minimal model can be a wise
choice even if the single site of policy interest
is not unique in terms of the alternatives in
this category. Both it and the complete detailed
models are utility-theoretic and complete: all
alternatives are included in the choice set. The
advantage of our minimal model is that one
does not need to identify and collect data on
all of the substitutes in the site’s category, a
difficult and expensive process.6

One cannot estimate a minimal model with
just RP data, SP data are required: one can-
not use the observed choices among sites to
estimate the parameters on site characteris-
tics using the cross-sectional variation in the
observed characteristics. Estimation of the pa-
rameters on the site’s characteristics requires
that one ask SP choice or frequency questions,
varying the characteristics of the site. For this
reason, those who disdain SP data will not
choose the minimalist approach; we are not in
this category, arguing that SP data are often to
be preferred.

The Policy Issue

Green Bay is contaminated with high lev-
els of PCBs (polychlorinated biphenyls); Lake
Michigan is PCB contaminated to a lesser de-
gree; inland lakes and rivers are not PCB
contaminated. Through the food chain, PCBs
bio-accumulate in fish and wildlife. As a re-
sult of elevated PCB concentrations in fish,
in 1976 the Wisconsin Department of Health
and Human Services first issued fish consump-
tion advisories (FCAs) for sport-caught fish
in the Wisconsin waters of Green Bay. These
FCAs for the waters of Green Bay continue
today, although the specifics of the FCAs
have varied through time. The research task
was to estimate, in a reasonable and cost-
effective manner, the E[cv]s Green Bay an-
glers would associate with eliminating or
reducing the need for the FCAs.7

FCAs vary by species. To value the changes
in FCA levels that would result in different

6 Deciding which sites to include in the category choice set, and
the implications of the decision, is a literature in itself.

7 The complete Report of Assessment for this NRDA is Breffle
et al. (1999), that contains many study details not presented or
explained in this article. As of November 2005, this report can
be downloaded at http://midwest.fws.gov/nrda/index.html. Breffle
et al. (forthcoming) is a nontechnical overview of all stages of the
damage assessment.

levels of contamination, we defined nine FCA
levels/configurations, each specifying the FCA
for each of our four species of interest (yel-
low perch, trout/salmon, walleye, and small-
mouth bass). Level 1 indicates PCB levels
are sufficiently low such that all species may
be eaten in unlimited quantities; there is no
health risk from consumption. Level 9 is the
most restrictive: trout/salmon, walleye, and
bass should not be eaten, and a perch meal
should be consumed once a month at most.
Level 4 corresponds to current conditions. The
FCAs by species for all levels are listed in
table 1.

With one exception, as one moves up
through the nine levels, the FCA becomes
more severe: the FCA for each species ei-
ther stays the same or becomes more severe.8

E[cv]s are reported below for a reduction from
level 4 to level 1.

Population, Sampling, and Response Rates

The target population is current Green Bay
anglers who live in the area: anglers who pur-
chased licenses in eight counties near Green
Bay and who fished in Green Bay in 1998.
A three-step procedure was used in 1998 to
collect data from a random sample of the tar-
geted anglers. First, a random sample of an-
glers was drawn from the 1997 license holders
in the county courthouses in the eight targeted
counties. Second, using the license holder list,
a telephone survey was conducted to identify
and recruit Green Bay anglers for a follow-
up mail survey. The telephone survey collected
some attitudinal data and data on the number
of fishing days at Green Bay. The overall re-
sponse rate to the telephone survey by Green
Bay anglers was 69.4%. Third, a mail sur-
vey with the SP questions was conducted with
the current Green Bay anglers. The response
rate to the mail survey was 78.9%, yielding
a data set of 647 individual anglers used in
the model and an overall response rate of
54.8%.

The RP data consist of the number of days
the angler fished Green Bay under current
conditions. In the sample, the number of Green
Bay days varies from one to over fifty with a
mean of 9.3 and a median of 5. The RP data also
include Green Bay per day costs for each

8 The exception is in moving from level 4 to level 5 and from
level 5 to level 6 with the consumption of some species becoming
more restricted and others less restricted. This anomaly is reflected
in the parameter estimates.
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Table 1. Possible Green Bay FCA Levels

Species Fish Meals Advised

FCA level 1 Yellow perch “Unlimited”
Trout/salmon “Unlimited”
Walleye “Unlimited”
Smallmouth

bass
“Unlimited”

FCA level 2 Yellow perch “Unlimited”
Trout/salmon “Eat no more than 1

meal a week”
Walleye “Eat no more than 1

meal a week”
Smallmouth

bass
“Unlimited”

FCA level 3 Yellow perch “Unlimited”
Trout/salmon “Eat no more than 1

meal a month”
Walleye “Eat no more than 1

meal a month”
Smallmouth

bass
“Eat no more than 1

meal a week”

FCA level 4 Yellow perch “Eat no more than 1
meal a week”

Trout/salmon “Eat no more than 1
meal a month”

Walleye “Eat no more than 1
meal a month”

Smallmouth
bass

“Eat no more than 1
meal a month”

FCA level 5 Yellow perch “Unlimited”
Trout/salmon “Eat no more than 1

meal a month”
Walleye “Do not eat”
Smallmouth

bass
“Eat no more than 1

meal a month”

FCA level 6 Yellow perch “Unlimited”
Trout/salmon “Do not eat”
Walleye “Eat no more than 1

meal a month”
Smallmouth

bass
“Eat no more than 1

meal a month”

FCA level 7 Yellow perch “Unlimited”
Trout/salmon “Do not eat”
Walleye “Do not eat”
Smallmouth

bass
“Eat no more than 1

meal a month”

FCA level 8 Yellow perch “Eat no more than 1
meal a week”

Trout/salmon “Do not eat”
Walleye “Do not eat”
Smallmouth

bass
“Eat no more than 1

meal a month”

FCA level 9 Yellow perch “Eat no more than 1
meal a month”

Trout/salmon “Do not eat”
Walleye “Do not eat”
Smallmouth

bass
“Do not eat”

angler. Costs include vehicle operating costs
and the opportunity cost of anglers’ time.
While the inclusion of the RP data has no ef-
fect on the estimation of the FCA parameters
relative to each other (because the FCA level
is the same for all observed Green Bay fishing
days), visitation varies significantly with fish-
ing costs, and the RP data play an important
role in the estimation of the marginal utility of
money.

Each angler was presented with eight SP
choice pairs: Green Bay under conditions A
or conditions B. Each Green Bay alternative
was described in terms of six characteristics: a
launch fee; the average amount of time neces-
sary to catch a fish (catch time) for each of the
four species; and the FCA level. Green Bay is
characterized in terms of catch rates and FCA
levels, and an angler’s share of the daily launch
fee. Figure 1 is an example of a choice pair
from the survey. The levels for each charac-
teristic were chosen so as to include current
conditions.

After each choice pair, a follow-up question
about the expected number of days the angler
would visit the preferred site was asked:

How often would you fish the waters of Green

Bay if it had the conditions described by the

alternative you just chose (A or B)? Your an-

swer could depend on a number of factors:

– How many days you typically fish in a

year and how many of those days are

spent fishing the waters of Green Bay.

– How much you enjoy fishing the waters

of Green Bay compared to other places

you might fish.

– How far you live from Green Bay com-

pared to other places you might fish.

– The cost of fishing the waters of Green

Bay compared to other places you might

fish.

– Whether you think the conditions for the

waters of Green Bay in the alternative

you just chose are better, worse, or about

the same as current conditions.

– The more you fish the waters of Green

Bay the less time you will have for fishing

elsewhere.

Excluding ice fishing, how many days, on

average, would you fish the waters of Green

Bay in a typical year if the conditions on the

waters of Green Bay were those described in

the alternative you chose? Fill in the blank.



154 February 2006 Amer. J. Agr. Econ.

Figure 1. Example choice question

days fishing the waters of Green Bay in a

typical year.

This is an SP frequency question. Answers to
this question vary from zero to over fifty with a
mean of 15.64 and a median of 10. That 15.64 is
greater than 9.3 (the actual average under cur-
rent conditions) is expected and reasonable.
Most choice pairs contain at least one alter-
native that is preferred to current conditions.

The preferred alternative in each pair is the
one chosen, and the individual is indicating
the number of trips he would likely take to
fish Green Bay (i.e., his intentions) under these
preferred conditions.9

9 Manski (1999) considers the problem of individuals having to
choose an action before the choice environment and choice set
are completely disclosed. He refers to these cases as incomplete
scenarios. In such cases, “coherent and cooperative individuals”
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However, the magnitude of the difference is
an indication that the respondents are overly
optimistic in terms of how often they would
fish Green Bay in improved conditions—they
report their good intentions. Looking ahead,
this suspicion is borne out by the parame-
ter estimates that predict that under current
conditions anglers will average 14.29 trips, an
estimate much closer to 15.64 than to how of-
ten they currently fish Green Bay. E[cv]s are
therefore presented with and without an ad-
justment for this optimism.

We proceed by assuming the responses to
the SP frequency questions are proportion-
ately correct with respect to one another. Our
hypothesis is that when answering SP fre-
quency data respondents tell us what they in-
tend to do, assuming everything else in their
future is running according to plan.10

For the SP choice data, income and fishing
costs cancel out the likelihood function, be-
cause they are constant across the two alter-
natives. However, for the SP frequency data
and the RP data, fishing costs do not drop out
of the likelihood function; fishing costs signif-
icantly affect how often an angler fishes (RP
data), and how often the angler expects he will
fish under varying conditions (SP frequency
data).

The Basic Model

Assume that there are N opportunities to
fish Green Bay during the season.11 On each
choice occasion, the angler decides either to
fish Green Bay or do something else. If angler
i chooses to fish Green Bay, utility is

UGBi = VGBi + εi i = 1, . . . , M(1)

base their answers on their “intentions.” See also Manski (1990).
What individuals state they would do in a survey context can be
different from what they would actually do on some actual choice
occasion, and that what they do on actual occasions might differ
across occasions. See McFadden (1986, 1999) for a discussion of
decision protocols and why different decision protocols for stated
intentions and actual choices might be assumed.

10 Supporting this, Grijalva et al. (2002) test the validity of SP
frequency questions and find that responses to SP frequency ques-
tions are responsive to scope (the extent and direction of the quality
change). Their data set is unique in the sense that they collected
SP frequency data for a proposed site change and RP frequency
data after the change was made policy.

11 We set N to 50. Only a few individuals in the sample fished
more than fifty times, and some of these were extreme outliers.
Setting N equal to or larger than the maximum number of trips in
the sample (120 in our case) would cause the per choice-occasion
probability of fishing Green Bay to be very small for most anglers,
making accurate estimation difficult.

where the random term, εi, is assumed to be
a random draw from one dimension of a joint
normal distribution. The dimension depends
on whether the choice is real (RP data) or hy-
pothetical (SP data).

Further assume

VGBi =
∑

�l cl +
9∑

q=2

l=p,s,w,b

�FCAqFCAq

+ �m(yi − TCi − fee) + εi

(2)

where cl is the time (in hours) it takes, on av-
erage, to catch one fish of species l (perch,
salmon/trout, walleye, and bass). For example,
the current perch catch time is approximately
0.75 hours. The nine possible configurations of
FCA’s (discussed above) are represented by a
set of eight dummy variables.

The variables yi and TCi are choice-occasion
income and the cost of fishing Green Bay, ex-
cluding any fees. The variable fee is a charge
imposed to fish Green Bay. The marginal util-
ity of money, �m, is assumed to be a constant.
Income not spent on fishing Green Bay, (yi −
TCi − fee), is spent on the numéraire.

If the angler chooses to do something else

UOi = VOi + �i(3)

where �i is a random draw from a different di-
mension of the above-mentioned joint normal
distribution. Further assume

VOi = �0 + �m yi + �gGi + �aAgei

+ �r Ri + �b Bi + �L Li + �LGLGi

(4)

where Gi = 1 if individual i is male, Ri = 1 if
the individual is retired, Bi = 1 if the individual
owns a boat, Li = 1 if the individual resides in
a county that borders Lake Michigan but not
Green Bay, and LGi = 1 if the individual re-
sides in a county that borders both Lake Michi-
gan and Green Bay. Looking ahead, these are
the individual characteristics found to be sig-
nificant determinants of how often the indi-
vidual fishes Green Bay. The region dummies,
Li and LGi, were included to reflect, in part,
differing choice sets across counties. For ex-
ample, individuals who reside in Door County,
the only county bordering both the lake and
the bay have fewer small site alternatives than
those in other areas. However, the significance
of these two dummies cannot be attributed
solely to the difference in fishing alternatives
across counties, but that does not really matter.
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The Likelihood Function

The data are of three types: the SP choice data
(Green Bay under conditions A or B), the SP
frequency data (how many times the angler
would choose to fish Green Bay if it had the
characteristic levels described in the chosen
alternative) and the RP frequency data (how
many times the angler fished Green Bay under
current conditions).

The Component of the Likelihood Function
Corresponding to the SP Choice Data

Anglers answered J Green Bay choice pairs.
For simplicity, initially suppress the i and j nota-
tion and denote the angler’s utility from choos-
ing alternative K as UK

GB, K = A, B with its

random term denoted εK.
The probability of the angler choosing alter-

native A is therefore

Pr(A) = Pr
(
U A

GB > U B
GB

)
.(5)

Assume each εK is an independent random
draw (across both individuals and pairs) from
a normal distribution with zero mean and vari-
ance �2

ε .
Given these normality assumptions, the

probability of choosing alternative A is

Pr(A) = Pr
[
V A

GB + ε A > V B
GB + εB

]
= Pr

[
εB − ε A < V A

GB − V B
GB

]
= �

(
V A

GB − V B
GB

/√
2�ε

)
(6)

where
√

2�ε is the standard deviation of εB −
εA and �(·) is the CDF (cumulative distribu-
tion function) of the standard normal.

Reintroducing the i and j notation, the like-
lihood function for these data alone is

M∏
i=1

J∏
j=1

Pr ij(A)aij
[
1 − Pr ij(A)

]1−aij(7)

where aij = 1 if individual i chooses alterna-
tive A in pair j and zero otherwise. With these
data alone, one could estimate the parameters
in the conditional indirect utility function for
Green Bay (equation 2) but not the parame-
ters in the conditional indirect utility function
for choosing Other (equation 4), so one can
estimate E[cv] per Green Bay fishing trip but
not E[cv] per choice occasion, which is what
we want; estimation of that requires frequency
data. So, we add SP and RP frequency data.

The Component of the Likelihood Function
Corresponding to the SP Frequency Data

After each SP choice question, the angler indi-
cated how many times he or she would choose
to fish Green Bay if it had the characteristic
levels described in the chosen alternative. Let
nij be the number of times angler i indicates he
would fish Green Bay if it had the character-
istic levels in the alternative he chose in pair j
and kij = 1 if alternative k was chosen and zero

otherwise, k = a, b.12

What is needed for the likelihood function
is the probability, on each choice occasion, of
choosing the chosen Green Bay alternative
over doing something else, conditional on the
fact that the utility from the chosen Green
Bay alternative is greater than the utility from
the Green Bay alternative not chosen. For ex-
ample, the probability of choosing Green Bay
over something else, conditional on alternative
A being chosen over B is

Pr(G B | A) = Pr
[
U A

GB > UO

∣∣ U A
GB > U B

GB

]
.

(8)

For each individual and pair, n has a bino-
mial distribution. That is, for an individual who
chose alternative A in the pair

Pr(n | A) =
(

N
n

)
Pr(GB | A)n

× [1 − Pr(GB | A)]N−n

(9)

and for an individual who chose B

Pr(n | B) =
(

N
n

)
Pr(GB | B)n

× [1 − Pr(GB | B)]N−n.

(10)

Consider now the distribution of the �, the
random term in equation (3). Assume each
� is an independent (across individuals and
pairs) random draw from a normal distribu-
tion with zero mean and variance �2

�. We al-

low a nonzero covariance, E(ε �) ≡ �ε�; that
is, the random component in the utility from
doing something else covaries with the ran-
dom component in the chosen SP Green Bay
alternative.

12 With enough variation in this SP frequency data, it alone is
sufficient to estimate the parameter in both conditional indirect
utility functions.
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Given these normality assumptions

Pr(GB | A)

= Pr
[
U A

GB > UO | U A
GB > U B

GB

]
= Pr

[
� − ε A < V A

GB − VO | εB − ε A < V A
GB − V B

GB

]
[ ]

= �2

(
V A

GB − VO

)
/��−ε,

(
V A

GB − V B
GB

)
/
√

2�ε, �

Pr(A)

(11)

where �2 is the the CDF of the standard bivari-
ate normal, �2

�−ε ≡ Var(� − ε) = �2
� + �2

ε −
2�ε�, and � is the correlation between (� − εA)

and (εB − εA).

� = �2
ε√

2�2
ε �2

�−ε

.(12)

The parameter �2
ε is fixed at 0.5 to identify the

model. The value of �2
�−ε is estimated; � is a

function of �2
ε and �2

�−ε .

The joint likelihood function for the SP fre-
quency data and the SP choice data is therefore

M∏
i=1

J∏
j=1

(
N
nij

)
Pr(GB | aij)

nij

× [1 − Pr(GB | aij)]N−nij

× Pr ij(A)aij [1 − Pr ij(A)]1−aij

(13)

where Pr(GB|1) = Pr(GB| A) and Pr(GB|0)=
Pr(GB | B).

The Component of the Likelihood Function
Corresponding to the RP Frequency Data

In addition to the SP data, we have for each
individual the number of times they fished
Green Bay under current conditions, gbi.

13 Let
Pr(gbi | C) be the probability of gbi given the
current conditions of Green Bay. This is a func-
tion of Pr(GB | C), the probability of choosing
Green Bay over something else on a choice
occasion.

13 Note that with this RP frequency data alone, one could estimate
the probability of fishing Green Bay on each choice occasion as a
function of cost; however, without additional data, the parameters
on the characteristics of Green Bay are not identified but rather
embedded in a constant term. Such a model would be a complete
demand system but have little detail.

Pr(GB | C) = Pr
[
U C

GB > UO
]

= Pr
[
V C

GB + εC > VO + �
]

= Pr
[
� − εC < V C

GB − VO
]

(14)

where εC is the random component on the util-
ity from actually fishing Green Bay under cur-
rent conditions.14

Assume the εC are independently dis-
tributed random draws across individuals from
a normal distribution with zero mean and vari-
ance �2

εC
; that is, the variance on the ε from the

actual choices, �2
εC

, is allowed to differ from
the variance on the ε from the A,B hypotheti-
cal choices, �2

ε . In other words, the amount of
noise in the utility from a hypothetical Green
Bay is allowed to differ from the amount of
noise in the utility from the actual Green Bay.
In addition, we allow a nonzero covariance be-
tween the � and the εC; that is, E(�εC ) = ��εC ;
the random components in the real alterna-
tives are allowed to be correlated.

Given these normality assumptions

Pr(GB | C) = Pr
[
� − εC < V C

GB − VO
]

= �
[(

V C
GB − VO

)/
��−εC

](15)

where �2
�−εC

= Var(� − εC ) = �2
� + �2

εC
− 2��εC .

Therefore,

Pr(gb | C) =
(

N
gb

)
Pr(GB | C)gb

× [1 − Pr(GB | C)]N−gb

(16)

and the likelihood function for the RP only
component of the data is

M∏
i=1

(
N
gbi

)
Pr(GB | Ci )

gbi [1 − Pr(GB | Ci )]N−gbi .

(17)

The joint likelihood function for the three
types of data is

14 The current conditions at Green Bay are as follows. Average
catch times for perch, salmon, walleye, and bass are 0.75 hours,
19.4 hours, 7.4 hours, and 15.0 hours, respectively. The FCA level
is level 4 (see table 1), and the average fee is $3.
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M∏
i=1

⎡⎢⎢⎢⎢⎢⎢⎣

(
N
gbi

)
Pr(GB | Ci )

gbi [1 − Pr(GB | Ci )]N−gbi

J∏
j=1

(
N
nij

)
Pr(GB | aij)

nij [1 − Pr(GB | aij)]N−nij

Pr ij(A)aij [1 − Pr ij(A)]1−aij

⎤⎥⎥⎥⎥⎥⎥⎦ .

(18)

A few words about identification are in or-
der. As noted above, the parameter �ε is fixed
to identify the model. The following param-
eters then can be identified and estimated:
�, �, ��−εC , and ��−ε . The individual compo-
nents, �εC and �� cannot be separately iden-
tified since we have allowed for the nonzero
covariances ��εC and �ε�, but looking ahead
we get a hint of their relative magnitudes.

Parameter Estimates and Results

Table 2 reports the maximum likelihood esti-
mates and t-statistics.

In summary, the utility from fishing Green
Bay is decreasing in catch time for each species
with the perch catch-time parameter being the
largest of the catch parameters in absolute
value. With one exception, the FCA param-
eters become larger negative values as one in-

Table 2. Maximum Likelihood Estimates and
t-Statistics

Parameter Estimate t-Statistic

�p −.36691 −64.00
�s −.00736 −4.486
�w −.02661 −16.938
�b −.01517 −21.439
�FCA2 −0.1442 −7.149
�FCA3 −0.2566 −7.641
�FCA4 −0.4261 −12.704
�FCA5 −0.6476 −29.632
�FCA6 −0.4424 −15.925
�FCA7 −0.7840 −34.043
�FCA8 −1.0411 −38.540
�FCA9 −1.2068 −46.825
�y .055289 −216.921
�0 12.6896 138.666
�g −2.0886 −166.822
�a 5.2056 56.224
�r −2.3618 −13.699
�b −2.2482 −71.295
�L 0.5153 12.862
�LG 1.9510 48.437a

��−ε 27.112 426.780a

��−εc 25.78 160.143a

aThis t-statistic applies to the square root of the parameter logged.

creases from level 1 (the least stringent) to
level 9 (the most stringent). The exception is,
as expected, level 5; see footnote 8. Men, boat
owners and the retired, are more likely to fish
Green Bay; the probability of fishing Green
Bay decreases with age. The constant term for
Other is large because most anglers do not fish
Green Bay on most choice occasions. The in-
cluded parameters are all significant, but given
that the variance–covariance matrix of the pa-
rameter estimates is approximated, we do not
put great stock in the magnitudes of the re-
ported t-statistics: likelihood ratio tests cor-
roborate the significance of all the included
parameters.

The estimated variances of both � −
ε(Var(� − ε) = �2

� + �2
ε − 2�ε� ) and � −

εC (Var(� − εC ) = �2
� + �2

εC
− 2��εC ) are large.

This is probably because their common ele-
ment, �2

�, is large; that is, the random, unex-

plained component in the conditional indirect
utility function for Other is large relative to
the variances of the Green Bay random terms
(�2

ε and �2
εC

)–not surprising since Other in-
cludes everything possible but fishing Green
Bay.

The model predicts that, under current con-
ditions, trips to Green Bay will vary from 0.21
to 17.3 with a mean of 14.29 and a median of
14.84; these are too high (the actual average is
9.3). They are being pulled up by the responses
to the SP frequency questions that indicate in-
tentions.

One can adjust for this divergence between
intent and outcome by scaling upward the
parameters in the conditional indirect utility
function for Other. The scale that causes the
predicted number of Green Bay trips under
current conditions to effectively equal the ac-
tual number is 1.7, suggesting optimism aver-
ages 70%; someone who says that he will likely
take three trips is more likely to actually take
two trips. With this adjustment, the predicted
number of trips to Green Bay varies from 0.1
to 12.9 with a mean of 9.5 and a median of 9.8.
With the calibration the model predicts that
the average number of Green Bay days will in-
crease to 9.7 (a 2% increase) if the need for
the FCAs is eliminated (level 4 to level 1).15

We feel the calibration is appropriate.16

15 Without the calibration, the model predicts a 2% increase in
the number of Green Bay trips.

16 When the contingent behavior questions were answered, they
were answered under varying sets of described characteristics. Our
use of the phrase “in a typical year” in the contingent behavior
questions refers to a typical year with those characteristics.
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The E[cvi]s for Reducing FCA Levels from
Current Conditions (Level 4) to Unlimited
Consumption of All Species (Level 1)

Estimated E[cv] is calculated for each angler
in the sample by calculating E[cv] per choice
occasion and then multiplying by fifty, the as-
sumed number of choice occasions.

Individual i’s E[cv] per choice occasion is

E
[
cvocc

i

] = 1

�y

[
E(max

(
U G1

i , U O
i

))
− E

(
max(U G0

i , U O
i

))](19)

where UO
i is the choice-occasion utility from

doing something else and UG
i is the choice-

occasion utility from fishing Green Bay.
Given that UG

i and UO
i are bivariate normal

(Maddala, 1983):

E
(

max
(
U G

i , U O
i

))
= Voi + (VGBi − Voi)�

(
VGBi − Voi

��−εC

)
+ ��−εC �

(
VGBi − Voi

��−εC

)
(20)

where �(·) is the CDF of the univariate, stan-
dard normal, and �(·) is the univariate, stan-
dard normal density function.

Calibrating Voi (multiplying it by 1.7) so that
the model correctly predicts the current aver-
age number of trips to Green Bay, the E[cvi] for
eliminating the need for the FCAs vary from
$0.55 to $100.35 with a mean of $74.10 (95%
confidence interval $64 to $84) and a median
of $76.42.17 These are annual values. The $0.55
is for an angler who lives far from Green Bay;
the calibrated model predicts that this individ-
ual would take only 0.07 trips to Green Bay if
it had no FCAs. The $100.35 is for a male an-
gler who owns a boat and lives on Green Bay;
the calibrated model predicts that this angler
would fish thirteen times per year if there were
no FCAs. Table 3 reports the frequency of the
E[cvi] in $10 increments; the distribution has a
long left tail toward $0.

Given that the E[cvi] estimates are substan-
tively determined by SP responses, the skep-
tic might question their reasonableness, and

17 For comparison, without the calibration, the E[cvi] for elimi-
nating the need for the FCAs are higher; they vary from $1.66 to
$133.14 with a mean of $111.17 (95% confidence interval $96 to
$128) and a median of $115.51.

Table 3. Individual Per-Year E[cv] for Elimi-
nating FCAs

E[cv] Frequency Percent (%)

<$10 5 0.773
$10–19.99 3 0.464
$20–29.99 2 0.309
$30–39.99 13 2.01
$40–49.99 21 3.25
$$30–39.99 62 9.58
$60–69.99 110 17.0
$70–79.99 148 22.9
$80–89.99 205 31.7
$90–99.99 77 11.9
$100–110 1 0.155

so the appropriateness of our minimalist ap-
proach. We do not. The E[cvi] are highly sen-
sitive to the extent of the improvement in the
FCA levels (the scope test). For example, the
mean E[cvi] for reducing the FCA levels from
level 4 to 2 are $48.82 and from level 4 to level 3
are $29.26. For halving the perch catch time the
mean E[cvi] is $23.74.

These damage estimates are reasonable. The
E[cvi] are only a small fraction of current ex-
penditures on Green Bay fishing trips. The es-
timates for the removal of FCAs fall within the
range of other values in the literature. See, for
example, Herriges, Kling, and Phaneuf (1999);
Chen and Cosslett (1998); Jakus, Dadakas, and
Fly (1998); and Parsons, Jakus, and Tomasi
(1999).

The estimates are also consistent with the
anglers’ answers to the attitudinal questions;
those answers reflect a serious concern for
PCB levels in fish. Many anglers indicate that
they have changed their behaviors in response
to the FCAs (e.g., they changed where they
fish, how much they eat, how they prepare the
fish).

Summary and Extensions

The task was to develop and estimate a model
capable of valuing a proposed change in the
characteristics of one, and only one, recre-
ational site. While not all valuation exercises
are of this nature, many are. The task was ac-
complished in a repeated, discrete choice, ran-
dom utility model with only two conditional
indirect utility functions: one for visiting the
site in question and one for everything else.
That is, everything other than visiting the site
on a choice occasion is lumped together in
one generic alternative. The model is therefore
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complete in that all alternatives are included
in the choice set. The big advantage of such a
minimal model is that one does not need to ex-
plicitly define the set of explicit substitute sites
for the site of interest (e.g., all of the other fish-
ing sites in the choice set) or the characteristics
of each of those sites. Collecting characteris-
tics data for all of the other sites in the choice
set is typically difficult, expensive, and hard to
defend.

At a minimum, estimation of the model
requires SP frequency data for the site of
interest (data on how many times each recre-
ator would visit the site under different sets
of site characteristics). In our case, the effi-
ciency of the parameter estimates is increased
by also including SP choice data (“would you
prefer to visit the site under conditions A or
B?”) and RP frequency data (how often does
each recreator visit the site under current con-
ditions). The RP frequency data are also used
to calibrate the model so that it accurately pre-
dicts the current number of trips to the site.
Our model harks back to earlier times when
environmental economists often estimated a
single-site demand. Our model is a complete
and utility-theoretic demand model that ex-
plicitly includes the characteristics of the site
and the estimation of the parameters on those
characteristics.

The E[cvi] are estimated for changes in the
levels of FCAs in the bay of Green Bay, which
was the primary objective of the Green Bay
application. The estimates are reasonable in
magnitude and scope.

The model is easily extended in numer-
ous ways without increasing the number of
conditional indirect utility functions. For ex-
ample, income effects could be included or
some of the parameters could be made ran-
dom parameters.

[Received November 2003;
accepted March 2005.]
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