A Simple Improvement

This section was deleted from the primer paper.

Briefly consider a price decrease in alternative $1, p_{1}^{1}<p_{1}^{o}$. Depending on the ε draw, an individual will fall into one of four groups:

- Group A : Individuals who do not choose alternative 1 either before or after its price decreases.
- Group B : Individuals that choose alternative 1 both before and after its price decreases.
- Group C : Individuals who switch from alternative 2 to alternative 1
- Group D : Individuals who switch from alternative 3 to alternative 1 (note that no one switches to alternatives 2 or 3)
Note that the switch groups are grouped in terms of the alternative the individual switches away from.

For individuals in group $A, c v=0$ and $m=y^{o}$. For individuals in group $B, c v>0$ and equal to $p_{1}^{o}-p_{1}^{1}$. If in group B, the expenditure level required to keep the individual at his original utility level, u^{o}, is $y^{o}+\left(p_{1}^{1}-p_{1}^{o}\right)=\mu<y^{o}$. If an individual is in group C or D, his $c v$ is between 0 and $\left(p_{1}^{o}-p_{1}^{1}\right)>0$. In terms of the required levels of expenditures, an individual in group C or D will require expenditures less than y^{o} and greater than μ.

As with the deterioration, our expectation of the level of expenditures required to make an individual whole can be decomposed into a number of terms

$$
E[m]=c_{A}+c_{B}+c_{C}+c_{D}
$$

All individuals in group A require the same expenditure level, y^{0}, to make them whole in the new state, so,

$$
c_{A}=\operatorname{Pr}\left(\operatorname{in} A: y^{o}\right) y^{o}
$$

where

$$
\operatorname{Pr}\left(\text { in } A: y^{o}\right)=1-P\left(1: y^{o}, y^{o}, y^{o}, p_{1}^{1}, p_{2}^{o}, p_{3}^{o}\right)
$$

Likewise, all individuals in group B require the same expenditure level, μ, to make them whole in the new state, so

$$
\begin{aligned}
c_{B} & =\operatorname{Pr}(\operatorname{in} B: \mu) \mu \\
& =P\left(1: \mu, y^{o}, y^{o}, p_{1}^{1}, p_{2}^{o}, p_{3}^{o}\right)
\end{aligned}
$$

If the individual chooses an alternative at the old price, he will continue to choose the alternative after the price has decreased.

For group C,

$$
c_{C}=-\int_{>\mu}^{<y^{o}} m \frac{\partial P\left(2: m, y^{o}, y^{o}, p_{1}^{1}, p_{2}^{o}, p_{3}^{o}\right)}{\partial m} d m
$$

where $P\left(2: m, y^{o}, y^{o}, p_{1}^{1}, p_{2}^{o}, p_{3}^{o}\right)$ is the probability of the alternative individuals in group C switch away from, and m is the expenditure level associated with the alternative they will switch to (alternative 1). Those in group C choose alternative 1 after its price has decreased, and alternative 2 before, so the relevant prices are p_{1}^{1}, p_{2}^{o} and p_{3}^{o}. As m increases in the range μ to $y^{o}, P\left(2: m, y^{o}, y^{o}, p_{1}^{1}, p_{2}^{o}, p_{3}^{o}\right)$ decreases; that is, as the expenditure level associated with choosing alternative 1 increases, holding constant at y^{o} the expenditure level associated with alternatives 2 and 3, it becomes more likely that the individual will switch to alternative 1 (and abandon alternative 2).

Finally, for group D,

$$
c_{D}=-\int_{>\mu}^{<y^{o}} m \frac{\partial P\left(3: m, y^{o}, y^{o}, p_{1}^{1}, p_{2}^{o}, p_{3}^{o}\right)}{\partial m} d m
$$

where $P\left(3: m, y^{o}, y^{o}, p_{1}^{1}, p_{2}^{o}, p_{3}^{o}\right)$ is the probability of the alternative individuals in group D switch away from, and m is the expenditure level associated with the alternative they will switch to (alternative 1).

Consider a numerical example where, $\beta=.1, y^{o}=100, p_{1}^{o}=97, p_{2}^{o}=95, p_{3}^{o}=96$ and $p_{1}^{1}=95$. In which case,

$$
\begin{aligned}
\operatorname{Pr}(\text { in } A & : 100)=1-P(1: 100,100,100,95,95,96) \\
& =1-\frac{\exp \left(.1(100-95)^{2}\right)}{\exp \left(.1(100-95)^{2}\right)+\exp \left(.1(100-95)^{2}\right)+\exp \left(.1(100-96)^{2}\right)} \\
& =0.58447
\end{aligned}
$$

So, $c_{A}=\operatorname{Pr}\left(\right.$ in $\left.A: y^{o}\right) y^{o}=(0.58447) 100=\$ 58.447$.
For this price decrease, $y^{o}+\left(p_{1}^{1}-p_{1}^{o}\right)=\mu=100-2=98$. so

$$
\begin{align*}
\operatorname{Pr}(\text { in } B & : 98)=P(1: 98,100,100,95,95,96) \\
& =\frac{\exp \left(.1(98-95)^{2}\right)}{\exp \left(.1(98-95)^{2}\right)+\exp \left(.1(100-95)^{2}\right)+\exp \left(.1(100-96)^{2}\right)} \\
& =0.12552
\end{align*}
$$

and $c_{B}=\operatorname{Pr}(i n B: 100) 98=(0.12552) 98=\$ 12.301$.
For group C,

$$
\begin{align*}
c_{C} & =-\int_{98}^{100} m \frac{\partial}{\partial m}\left(\frac{\exp \left(.1(100-95)^{2}\right)}{\exp \left(.1(\mathrm{~m}-95)^{2}\right)+\exp \left(.1(100-95)^{2}\right)+\exp \left(.1(100-96)^{2}\right)}\right) d m \\
& =\$ 20.455
\end{align*}
$$

This calculation was done using a call to Maple in Scientific Workplace, as was the next calculation

$$
\begin{aligned}
c_{D} & =-\int_{98}^{100} m \frac{\partial}{\partial m}\left(\frac{\exp \left(.1(100-96)^{2}\right)}{\exp \left(.1(m-95)^{2}\right)+\exp \left(.1(100-95)^{2}\right)+\exp \left(.1(100-96)^{2}\right)}\right) d m \\
& =\$ 8.3166
\end{aligned}
$$

Concluding,

$$
E[c v]=y^{0}-E[m]=100-(58.447+12.301+20.455+8.3166)=\$ 0.4804>0
$$

which is positive, as required, but closer to zero than to $\$ 2$ because 58% have a $c v$ of zero and only 12.5% have a $c v$ of $\$ 2$.

